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ABSTRACT
A key aspect of Federated Learning (FL) is the requirement of a centralized aggregator to select and integrate
models from various user devices. However, infeasibility of an aggregator due to a variety of operational constraints
could prevent FL from being widely adopted. In this paper, we introduce BAFFLE, an aggregator free FL
environment. Being powered by the blockchain, BAFFLE is inherently decentralized and successfully eliminates
the constraints associated with an aggregator based FL framework. Our results indicate that BAFFLE provides
superior performance while circumventing critical computational bottlenecks associated with the blockchain.

1 INTRODUCTION

Federated Learning (FL) (Konecny et al., 2016) is a dis-
tributed machine learning paradigm that has been designed
with the primary purpose of preserving data privacy. FL
paradigm accomplishes large scale learning tasks (Bonawitz
et al., 2019) with data sets fully localized on end user de-
vices ensuring data privacy. Computationally, the entire FL
process is divided into rounds. In each round, an aggregator
selects a set of user devices and integrates copies of their
locally trained machine learning model into a globally held
model.

A central assumption of the FL paradigm is the presence of
the aggregator meant to coordinate the global computational
progress. An aggregator discharges four main functions in
the FL paradigm. First, it is responsible for delineating the
global computational process into distinct rounds. Second,
it maintains a global estimate of the machine learning model
which is updated after every round. Third, the aggregator
is responsible for selecting the devices and sending a copy
of the global model estimate to each. Lastly, the aggregator
is responsible for performing the critical step of updating
the global model estimate with the aggregate of the selected
local copies.

Despite its privacy benefits, the FL paradigm faces numer-
ous computational and operational challenges. First, in FL
applications, end users are assumed to trust their aggrega-
tor’s ability to carry out the selection and aggregation of

1School of Computational Science and Engineering, Georgia
Institute of Technology, Atlanta, GA, USA 2TieSet Inc., Santa
Clara, CA, USA. Correspondence to: Paritosh Ramanan <par-
itoshpr@gatech.edu>, Kiyoshi Nakayama <knakayama@tie-
set.com>.

local models in a fair and impartial manner. However, such
an assumption could be highly misplaced since an aggre-
gator can potentially exhibit bias towards a select few user
devices thereby poisoning the FL process (Bagdasaryan
et al., 2018). Second, the scope of FL is restricted to ap-
plications where a centralized aggregator is orchestrated
on the cloud (Konecny et al., 2016). As a result, an aggre-
gator’s resiliency depends on the robustness of the cloud
infrastructure. Owing to a rather centralized nature of cloud
based systems, a failure at the cloud level could precipitate
the collapse of the entire FL mechanism as well. Lastly,
the same cloud based computational framework needs to
be individually instantiated for every FL task which in turn
leads to separate instantiations of the centralized aggregator
as well. Therefore, a scalable, cloud based FL framework
for a single learning task demands a high barrier for partici-
pation in terms of resources and expertise. Such restrictions
render the benefits of FL inaccessible to micro enterprises
and social organizations which might lack the scale and
sophistication to launch and manage their own large scale
FL tasks.

In this paper, we investigate the use of blockchain as a means
to eliminate the computational and operational limitations
induced by a cloud based aggregator. Our framework uses
blockchain based Smart Contracts (SC) that are designed
to generalize the concept of transactions in cryptocurren-
cies using distributed ledger technologies (DLT). SCs are
written in specialized Turing complete languages and are
executed on top of the existing cryptocurrency layer through
a blockchain based virtualized environment (Christidis &
Devetsikiotis, 2016). Therefore, by their very design, such
virtualized environments offer a versatile platform on which
SC driven decentralized applications (dApps) can be created,
tested, and deployed. Internally powered by a peer-to-peer
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consensus protocol of the underlying blockchain, such a
platform becomes ideal for implementing a purely decen-
tralized FL framework.

Our approach leverages SCs to effectively decentralize the
rounding, selection and aggregation mechanisms of the FL
paradigm. We assume that the global model copy and the
associated computational state can be maintained on the SC
which results in numerous interesting benefits. First, based
on the global state of all peers, user devices could self de-
termine their selection in rounds. Second, the global model
copy can be used by the selected devices to perform the
aggregation step autonomously in every round. Lastly, the
selected devices can also update the global model indepen-
dently, thereby driving the global computational progress
forward. The benefits stemming from our approach imply
that the aggregation, selection, and delineation of rounds is
completely spearheaded by the devices themselves with the
SC merely acting as a facilitator. Therefore, a blockchain
based decentralized approach effectively renders the entire
FL process aggregator free.

Owing to our blockchain based approach the fundamental
limitations of trust, resiliency, and accessibility in aggre-
gator driven FL frameworks can be completely eliminated.
First, the round delineation, selection, and model aggrega-
tion occurs in a fully decentralized manner helping restore
trust. Powered by the underlying consensus protocol, the
SC helps ensure transparency, fairness, and impartiality in
the FL process (Christidis & Devetsikiotis, 2016) Second,
blockchain automatically introduces fault tolerance by its
very nature which delivers resiliency in computation. Lastly,
owing to their deployment on the blockchain itself, a sin-
gle SC can coordinate round delineation, selection, and
aggregation phases for multiple FL tasks simultaneously
from varied sets of user devices. Due to such versatility, a
blockchain based FL framework saves on cloud based setup
and operational costs as well as eliminating expertise and re-
source requirements to maintain a cloud driven application
(Khajeh-Hosseini et al., 2010). Such an operational benefit
lowers the entry barrier for smaller players and improves
accessibility significantly.

From a social standpoint, a lower entry barrier for adopting
FL could have far reaching community centric benefits as
well. Micro scale organizations part of the same community
can use existing SCs on public blockchains to self orga-
nize and leverage FL among their peers. In doing so, each
organization in a community can preserve their own data
privacy but yet collaborate on building a global model that
helps address challenges common to the entire community.
Therefore, a blockchain based FL framework can be used
to empower communities of users who would otherwise
not have the capability to obtain robust machine learning
models for their own internal challenges.

However, the usage of SCs requires careful consideration
of the computational constraints imposed by the blockchain.
First, storage of data and computation on SCs incurs miner
fees for sustaining the consensus protocol. Second, push-
ing an entire machine learning model to the SC becomes
computationally bulky potentially incurring heavy commu-
nication latency. Lastly, there are limits on transaction size
imposed by the blockchain protocols that restrict the amount
of data that can be stored and updated on blockchain in a
single transaction. These computational constraints place
limitations on the model aggregation and update process in
FL.

In this paper, we propose BAFFLE, a blockchain based
aggregator free FL environment. We show that BAFFLE
is able to successfully eliminate the limitations of the ag-
gregator driven FL paradigm in a computationally sound
manner. We devise a budgeted approach to model update
and aggregation and leverage SCs to delineate the rounds.
We theoretically show that a classical FL scheme is equiv-
alent to a BAFFLE driven approach with a linear relation
between the respective learning rates. We provide a prac-
tical, production level implementation of BAFFLE on a
private Ethereum network, with Solidity powered SC de-
ployments. We demonstrate the merits of BAFFLE on a real
world case study using a large Deep Neural Network(DNN)
model. Based on our case study, we perform exhaustive
experiments to study the benefits, robustness and scalability
of BAFFLE compared to other benchmarks. Our results
indicate that BAFFLE provides superior computational per-
formance despite the highly restrictive constraints imposed
by the blockchain.

Our paper is organized as follows. In Section 2 we pro-
vide an overview of related work pertaining to the fields of
blockchain and decentralized ML. Section 3 deals with the
various paradigms that govern decentralized computation
over the blockchain. Section 4 discusses the novel strategies
employed in BAFFLE to circumvent the restrictions im-
posed by the blockchain. Section 5 provides an overview of
the local and global computational perspectives of BAFFLE.
Section 6 introduces a real world case study of improving
driver revenue where an aggregator free FL mechanism
could be highly beneficial. Section 7 deals with the entire
set of experiments and their analysis. We conclude the paper
in Section 8 in addition to providing a quick overview of
future work.

2 RELATED WORK

Improving a global neural network model using distributed
data with a privacy-preserving purpose was first studied in
(Shokri & Shmatikov, 2015). The authors provide a scheme
of jointly learning an accurate model by multiple parties for
a given objective. More specifically, they consider a global
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shared memory model where parameters of the global model
are held. Various agents participating in this framework can
update a random subset of global parameters based on their
local training.

Federated Learning was later proposed in (McMahan & Ra-
mage, 2017; Konecny et al., 2016) with theoretical basis
explored in (Konečnỳ et al., 2015). The authors provide an
effective method for building collective knowledge across a
set of devices while preserving their individual autonomy
and privacy. There are ongoing efforts to scale up the FL
framework as presented in (Bonawitz et al., 2019). The
framework considers multiple aggregators headed by a mas-
ter in order to manage the entire FL process. Although the
work proposes a distributed network of aggregators coordi-
nated by a master, it is not inherently aggregator free.

(Lalitha et al., 2018; 2019) propose a framework of fully
decentralized FL in which users update their belief by ag-
gregating information from neighbors. While the theoretical
aspect of decentralized FL is explored in these works, nu-
merous system and architectural issues persist in achieving
true decentralization. As a result, such systemic issues need
to be dealt with in order to obtain a FL framework that is
feasible under practical settings.

Practical efforts to integrate AI onto the blockchain are
largely confined to white paper proposals without any tangi-
ble real world implementations available. The framework
proposed in (Chen et al., 2018) designs an SC based ma-
chine learning platform allowing users to upload tasks as
well as contribute models to solve existing tasks. A dis-
tributed, AI computing platform has also been proposed in
(Yong et al., 2017) where mining nodes earn their income
from processing AI models.

There are also several projects that integrate federated learn-
ing into blockchain technologies. The work done in (Kim
et al., 2018) supports implementing the FL framework into
the mining mechanism of the underlying blockchain plat-
form. However, owing to modification requirements to the
underlying consensus protocols such approaches tend to
be cumbersome to implement on off the shelf blockchain
platforms. The work done in (Harris & Waggoner, 2019)
proposes and implements a decentralized AI framework
using the blockchain. However, a key requirement of this
framework is that training data from devices needs to be
published on the blockchain. As a result, the data privacy
benefits of FL paradigm is eliminated. In fact, the authors
note that a decentralized, blockchain based AI framework
with full user data privacy is a key component of their future
work.

Despite the above mentioned attempts, a concrete, practical
framework for realizing decentralized aggregator free FL is
so far lacking both in research and in industrial domains.

To the best of our knowledge, BAFFLE is the first
production-level decentralized FL platform that could run
over existing blockchain networks such as Ethereum.

3 BLOCKCHAIN BASED DECENTRALIZED
COMPUTATION

We now proceed to discuss the foundations of the blockchain
that influence the design of BAFFLE. The entire blockchain
paradigm can be divided into three distinct parts that are
relevant to our discussion of aggregator free FL.

3.1 Distributed Ledger

Blockchain (Wood et al., 2014), which was intruduced as
a core technology of Bitcoin (Nakamoto et al., 2008), is
one form of peer-to-peer (P2P) distributed ledger technolo-
gies (DLT) forged by consensus, combined with a system
for smart contracts and other assistive technologies. A dis-
tributed ledger is basically an immutable database that re-
sides across several or a number of nodes with computing
devices and memories. Each node possesses an identical
copy of the ledger of transactions, the record of events cryp-
tographically secured with a digital signature that is verified,
ordered, and bundled together into blocks, formed in the
blockchain. Individual nodes of the network update their
ledger independently.

3.2 Consensus Protocols

The important feature of decentralization by blockchain
is that the ledger is not maintained or managed by any
central authority. Updates to the ledger are independently
constructed and recorded by each mining node in a decen-
tralized fashion. Changes to the DLT are approved based
on a vote from a majority of the mining nodes. While there
are several consensus protocols, we use Proof-Of-Authority
(PoA) for our implementation of BAFFLE. A discussion of
consensus protocols can be obtained in Section A.2

3.3 Smart Contracts

Smart Contracts (SCs) are self-executing contracts with the
terms of the agreement being directly written into lines
of code. SCs reside on the distributed ledger and as a re-
sult they are available across the entire blockchain network.
They are deployed on the blockchain using the consensus
mechanism and referenced by a unique address. SCs are
written in contract-oriented languages such as Solidity and
any change made to the SC needs to also be validated by the
blockchain’s consensus mechanism. SCs prove to be highly
versatile and can define data, functions, and conditions and
allow anyone having access to their address to interact and
modify their contents.
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3.4 Gas Costs

In blockchain platforms such as Ethereum, the concept of
gas plays an important role. Gas value actually signifies the
standardized remuneration that miners receive in return for
validating a piece of SC code wrapped around a blockchain
transaction. As a result, Gas is deemed a standard unit of
measuring the computational effort required to execute SC
code on the blockchain.

We now discuss specific blockchain system constraints that
prove challenging for an aggregator free FL mechanism. In
addition, we also describe the key tenets of our solution
methedology that allows us to circumvent these constraints.

4 SMART FL CONTRACT DESIGN:
DECENTRALIZING ROLE OF
AGGREGATOR

As mentioned in Section 1, a number of technical aspects
need to be considered in order to make the FL process
aggregator free. In this section, we examine the salient
features of BAFFLE that allows us to circumvent blockchain
based system constraints without compromising on solution
quality. Even though BAFFLE has been implemented and
evaluated on the Ethereum platform, the same technical
principles would extend over to other blockchain based SC
platforms as well.

4.1 Chunking

Most blockchain platforms have an upper limit pertaining
to the data size of each transaction. For the Ethereum Vir-
tual Machine (EVM) with the version we have used, this
limit has been set to 24 kB by default. Such a limitation
immediately results in a bottleneck for an aggregator free FL
scheme since the underlying machine learning models are
usually significantly larger than the transaction limit sizes.
Such a system induced constraint necessitates the need for
partitioning the machine learning model weight vector into
numerous chunks such that each chunk size is less than the
maximum transaction size.

However, chunking in turn introduces a few other notable
aspects with regards to model sharing.

Serialization: Since storage on the SC is expensive, the
machine learning model needs to be stored in a serialized
format. However, partitioning the model after serialization
leads could lead to inconsistencies. Therefore, for a spe-
cific FL task, it is important to first generate a partitioning
scheme that must be used by all agents followed by individ-
ual serialization of the chunks. Such a chunk-and-serialize
scheme has numerous benefits. First, the chunks can be read
to and written from independently and seamlessly. Second,
such an independence among chunks can be exploited for

parallel updates from multiple devices at the same time.
Lastly, a chunk independence scheme also leads to a poten-
tial scoring technique wherein parts of the model can be
evaluated for their worth.

Budgets: A potential benefit of chunking is that user devices
are empowered to decide their levels of contribution individ-
ually. Since, pushing chunks on the blockchain involves a
computational cost as well as miner fees, users can indepen-
dently evaluate their own cost to benefit ratio and decide the
number of chunks that they wish to update in a round. The
maximum limit on the number of chunks that a user device
wishes to update is referred to as the budget for that device.
As a result the set of budget values from all user devices can
be heterogenous in nature.

4.2 Scoring and Bidding

Each chunk is assigned a score by the end user devices them-
selves based on a norm difference with respect to the latest
available global copy. Depending on a random selection
the user device submits bids on a set of chunks as allowed
by the budget limit. The SC receives bids on a diverse set
of chunks from different user devices in every round. For
chunks on which multiple bids were submitted, the device
submitting the maximum score is chosen as the sole updater
of the chunk.

4.3 Delineation of Rounds

Owing to the decentralized nature of our approach, the onus
of delineating the rounds rests with the end user devices
themselves aided by the information maintained on the SC.
Specifically, a Participation Level (PL) is chosen for every
FL learning task which specifies the number of agents which
must have submitted their bids in order for the round to start.
Once the participation level criteria is met, the round begins
and no new devices are allowed to participate. Devices
upload the chunks on whom their bids were accepted and
proceed to signal a close of their round.

5 COMPUTATIONAL PERSPECTIVES IN
BAFFLE

The entire aggregator free blockchain based FL paradigm
presented by BAFFLE can be viewed in terms of two im-
portant perspectives. The computational steps undertaken
by the user devices in their interaction with the blockchain
network forms the local perspective. The global perspective
details the computational picture pertaining to the role of
the SC in orchestrating the BAFFLE framework.

5.1 User Level Actions: The Local Perspective

Locally, model training and aggregation form the two impor-
tant steps that every user device participating in BAFFLE
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must undertake.

5.1.1 Local Training

User devices continuously observe new data points from
their environment which can be leveraged for the FL task
at hand. The user device pulls the latest available model
from the blockchain and performs an average with its latest
available local copy. The resulting model is used to train on
the locally available data to yeild the new local copy.

5.1.2 Model Aggregation and Update

In order to aggregate with the other devices and push its
update to the chain, every agent considers the local model
copy obtained after local training. The steps taken by the
user device for model aggregation and update can be traced
with the help of the flowchart depicted in Figure 1 and
summarized concisely in Algorithm 1. Each user device is
initialized on the basis of the same given partition scheme.
As soon as local training is complete, user devices average
with the global model copy and check for the round status.
In case a round is already underway and thus inactive, the
user device returns to the task of collecting new data. If a
round is active and accepting bids, devices choose randomly
from their local chunks based on their budget size. A scalar
score is assigned to each chunk based on the norm of the
difference of the local weights with the global weights copy.
These scores form the basis of the bid submitted to the SC
which decides on which user device gets to update which
chunk.

Initialize
SmartContract
Parameters

No
Is	a	
Round	
Accepting
Bids?

Close	Round:
Terminate
Participation

Send	scores	as
bids
to	SC

Is	the	PL
value	met?

Pull	Global
Model

Perform	Local
Training

Average	with
Global	Model

Observe
New	Data

Determine
chunks
to	bid	on

Yes Evaluate	scores
of	selected
chunks

No

Yes

Figure 1. Flowchart depicting the sequence of events at the agent
level

5.2 Global Perspective: The Overall Picture

Globally, the computational process employed by BAF-
FLE is divided into three distinct phases. We illustrate the
global computational perspective with the help of an exam-

Algorithm 1 Agent based SC interaction
for k = 0 . . . do

if round is open for participation then
choose chunks C̃k ⊆ C, |C̃k| = Bj randomly
calculate scores δc = ||Qc −Qj,c

k+1||, ∀c ∈ C̃k

submit bids [c, δc],∀c ∈ Ck to SC
determine accepted chunk set Ck ⊆ C̃k

push Ck to blockchain
end if

end for

ple shown in in Figure 2. In our example we consider a
BAFFLE system comprising of 5 asset devices A1, A2, A3,
A4, A5 respectively. The model is divided into 5 chunks
C1, C2, C3, C4 and C5. For this example, we consider a PL
value of 4. In Phase 1, each device performs local training
and aggregation to generate new bids. Next, every device
attempts to submit bids for its randomly chosen chunks.
The bids chronologically arrive in the order A1, A3, A5, A4
and A2. In Phase 2, owing to the PL value being met with
the arrival of bids from A4, A2 is rejected from the current
round. The accepted devices push the respective chunks for
which their bids were accepted. In Phase 3, every device
eventually signals the culmination of all its local steps to the
SC to mark the end of Phase 3 as well as the current round.

From a theoretical perspective, using lemma 1, we show that
the global computational process is equivalent to classical
FL scheme with a learning rate that varies by a constant
factor.

Lemma 1. A learning rate of ηBFL, of a model comprising
of C total chunks, with L participating agents possessing
a maximum budget potential of B ≤ C is equivalent to
a classical Federated Learning scheme with learning rate
ηFL such that:

ηBFL =
2.C.(C −B + 1)αFL

B.L.αBFL
.ηFL

where αFL, αBFL are the probability that an agent is se-
lected for model aggregation for aggregator free decentral-
ized FL and the classical FL respectively.

Proof. Proof provided in Section A.1

6 CASE STUDY: IMPROVING TAXI DRIVER
REVENUE WITH BAFFLE

A key problem in the taxi and ride sharing industry is to
improve driver revenue by reducing idle time (Han et al.,
2016). Drivers are often unable to find passengers at certain
locations in the city at varying points of time during the
day due to low demand (Han et al., 2016). As a result, they
usually hover around the same location until they find a
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Figure 2. Global computational steps

passenger. Idling time reduces vehicle utilization and leads
to potential loss in revenue for the individual driver (Verma
et al., 2017).

The application of machine learning to improve driver rev-
enue by reducing idle time has been studied before (Han
et al., 2016; Verma et al., 2017; Shi et al., 2018). Based
on existing work, a Deep Reinforcement Learning (DRL)
scheme is demonstrated to provide good quality improve-
ment in driver revenues (Shi et al., 2018). However, these
approaches assume the presence of a centralized coordina-
tor to steer the RL process. A central repository of ride
information presents several privacy issues which have been
successfully exploited to de-anonymize passenger informa-
tion (Douriez et al., 2016). The work done in (Shi et al.,
2019) as an extension of (Shi et al., 2018) introduces pri-
vacy preserving features and distributed computation as a
means to improve driver revenue. However, (Shi et al., 2019)
assumes a hierarchical computational setup that prevents
all the benefits of decentralized computations from being
realized in their entirety. The requirements of multiple con-
trol centres to perform the learning tasks leads to limited
applicability of such approaches.

6.1 Benefits of Aggregator Free FL for Improving
Driver Revenue

The taxi and ride sharing industry is a perfect example of
micro scale enterprises that could benefit significantly from
an aggregator free FL approach. The ride sharing and taxi in-
dustry remains largely an unorganized market where setting
up a trusted coordinator remains a challenging proposition.
Even in case of a central data repository, extracting intelli-
gence from the anonymized data proves to be a futile exer-
cise (Douriez et al., 2016). Moreover, drivers usually also
do not have access to sophisticated computing platforms

on which they could orchestrate learning tasks to improve
their revenue. Therefore, a decentralized aggregator free FL
environment allows drivers to leverage their collective ride
experiences and improve their revenue without sharing their
private ride data itself.

6.2 Deep Batch Reinforcement Learning for Taxis

We use a batch DRL paradigm to learn the Q function values
and employ the Deep Neural Fitted Q (Riedmiller, 2005)
method to accomplish our learning task. Specifically, we
define our states and actions as follows:

• Pickup State si:<pickup location, pickup time >

• Dropoff State s′i:<dropoff location, dropoff time >

• Action a: action (dropoff location)

• Reward r: fare

State is defined by S × T , where S is set of discrete cells
that divide the city into distinct grids. T is set of 96 discrete
intervals of 15 mins each for 24 hours. Therefore, given
N rides, we denote the ride set H = {(si, ai, s′i, ri),∀i ∈
{1, . . . , N}}.

Q̃k(si, ai) = ri + γmax
b
Qk(s

′
i, b),∀i ∈ H (1a)

Qk+1 ← Q̃k − η∇Q̃(si, ai) (1b)

Equations 1a and 1b govern the functioning of the batch
DRL framework at the kth round. The Q function is updated
based on Equation 1a before being trained on the DNN using
Equation 1b.

In Algorithm 2, we consider P taxis and begin by initializing
all user devices to the same initial state. Next the partition
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Algorithm 2 BAFFLE for Improving Driver Revenues
for taxi: j = 1 . . . P do

initialize model Qj
0 = Qinit, budget B

initialize chunk set C based on given partition scheme.
for k = 0 . . . do

observe new ride setHk

pull latest available model Q from blockchain

perform averaging Qk ←
Qj

k+Q

2

update Q̃j
k based on Equation 1a

locally train Qj
k+1 via Equation 1b

employ Algorithm 1 to push updates to SC
end for

end for

information and SC details is loaded on each device. The
user devices utilize a new set of rides accumulated locally
in every round. The local estimate of the Q function is
updated and trained locally based on Equations 1 before
being pushed onto the blockchain using Algorithm 1.

6.3 Data and Benchmarking Techniques

For our case study, we used the NYC taxi data set (Travel
& of New York) for our experiments. Specifically, we ran-
domly chose 2 million rides pertaining to May 2018 which
was divided into two equal parts to denote the training and
testing data sets. Restricting the rides specifically for the
area of lower Manhattan resulted in approximately a lit-
tle more than half million rides each in training and test
data sets. The training set was used to assign rides to taxis
participating in the FL process.

On the basis of the test set, we determine 50 taxi trajectories
which form benchmark for FL tasks based on work done
in (Verma et al., 2017). Each trajectory comprises of 50
rides and assumes idling in case no ride is found. The sum
total of fares accrued from the 50 benchmark trajectories is
referred to as the Aggregated Simulation Revenue (ASR)
which forms the No Learning (NL) baseline for our case
study.

The benchmark trajectories and the accompanying simula-
tion procedure are also used to calculate ASR values for
various DRL models as well. However in this case, instead
of hovering in the same location upon not finding a ride, the
DRL model in question is used to determine a new location
to transition into (Verma et al., 2017). The sum total of fares
from the ensuing trajectories denotes the ASR value for the
DRL model being considered. For robustness purposes, we
perform this simulation multiple times for any DRL model
and report the average ASR value.

We derive a RandomDFL mechanism that is inspired by
the work done in (Shokri & Shmatikov, 2015) that can be

directly applied for orchestrating a naive aggregator free FL
approach. RandomDFL is described in detail in Section A.5

7 EXPERIMENTS

In order to evaluate the efficacy of BAFFLE, we focus on
four key experiments. We perform a benchmark study where
we compare the potential benefits from BAFFLE with re-
spect to classical FL as well as other non FL paradigms.
Next, we examine the trends arising from varying number
of chunks as well as budget sizes of user devices. We then
move onto a scalability analysis that demonstrates the im-
pact of varying the total number of active user devices on
the model quality. Lastly, we demonstrate the robustness of
BAFFLE to the participation level (PL) parameter of BAF-
FLE. Further, we also show superior computational perfor-
mance of BAFFLE compared to the best possible aggregator
free approach inspired by the current state-of-the-art.

7.1 Experimental Setup

BAFFLE was implemented and evaluated on a private
Ethereum blockchain setup exclusively for our computa-
tional experiments. We employed go-ethereum, an of-
ficial go based implementation of the Ethereum protocol
(GETH) to orchestrate our private blockchain comprising
of 16 Ethereum nodes. Proof-Of-Authority was used as
the primary consensus protocol for all our experiments.
The SC layer was developed using the Solidity program-
ming language and deployed on the private blockchain using
go-ethereum. The private blockchain was deployed on
an Intel Xeon CPU with a clock rate of 2.40 GHz with 16
cores and 2 threads per core. We used OpenMPI (Gabriel
et al., 2004) in conjunction with mpi4py (Dalcin) to spawn
multiple distributed memory client processes intended to
simulate the user devices on the field. Client processes
were deployed on Intel Core i7 CPUs with 12 cores each.
We used a 2 layer DNN with 500 perceptron in each layer
for our experiments on Keras (Chollet et al., 2015) with
TensorFlow (Abadi et al., 2015).

7.2 Benefits Study

Table 1. Benefit Analysis

Category ASR (USD) Benefit (%)
No Learning (NL) 13387.31 -

Local Learning (LL) 16106.02 20.31
Classical FL (CFL) 18495.94 38.16

BAFFLE 18442.21 37.75

In this experiment we compare the benefits accrued by
drivers participating in BAFFLE with respect to two other
types of learning paradigms. The first comprises of a Local
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Learning (LL) mechanism, wherein no model aggregation
is involved. The second paradigms pertains to an aggregator
driven Classical FL(CFL) scheme. We considered each taxi
having accumulated approximately 700 rides in each round
for a total of 50 rounds. For the FL cases we considered
16 taxis whereas for the LL case, we considered a single
taxi. Table 1 presents the results with respect to LL, CFL
and BAFFLE mechanisms in terms of their ASR value and
benefit relative to the NL baseline.

The trends depicted in Table 1 provide numerous key in-
sights into the performance of BAFFLE. Primarily, we ob-
serve that BAFFLE is able to provide a benefit of approx-
imately 38% which rivals the CFL approach. Further, we
observe that BAFFLE and CFL approaches improve driver
benefit by close to 18% as compared to the LL case. Overall,
the results demonstrate that blockchain driven FL paradigms
are highly capable of delivering good quality machine learn-
ing models in an aggregator free, decentralized fashion.

7.3 Sensitivity Analysis

Table 2. Final Benefit (%) based on Average ASR

Chunk No. Of Budget Size
Size (kB) Chunks 16 24 32

2 738 38.32 38.18 36.51
4 356 36.37 36.87 39.17
8 181 40.23 34.79 38.11

16 88 39.07 38.82 38.02

Table 3. Average Total Training Time(in secs) (Std Dev.)

Chunk Budget Size
Size (kB) 16 24 32

2 87.48(2.89) 85.97(3.26) 73.49(2.70)
4 79.92(3.18) 77.63(2.83) 73.22(3.87)
8 74.16(3.70) 71.90(2.53) 69.79(3.09)

16 73.44(4.01) 76.39(3.37) 71.79(3.51)

We perform a robustness study to analyze the impact of
variation in chunk sizes as well as local budget sizes on the
overall model quality. For this experiment, we considered a
total of 64 taxis, with each taxi having accumulated approx-
imately 70 rides in each round for 125 rounds overall. Table
2 shows the benefit percentage calculated for varying chunk
and budget sizes. Figure 3 represents the overall trends with
Figures 3(a), 3(b) depicting the boxplots pertaining to Gas
Costs, Push Time respectively. Table 3 shows the mean and
standard deviation with respect to the training time incurred
by the individual agents.

The results for all the combinations in Table 2 depict benefits
that closely mirror that of the CFL approach shown in Table

2 on the same training set. Therefore, on the basis of data
presented in Table 2 one can conclude that BAFFLE is
significantly resilient to varying degrees of budget and chunk
sizes.

On the basis of Table 3, we conclude that time incurred for
training is marginal compared to the push time depicted in
Figure 3(b) for all combinations of budget and chunk sizes.
The relatively small training time implies that reducing the
total push time is critical in ensuring a computationally
efficient performance for a blockchain based FL mechanism.

We draw upon the trends shown in Figure 3 to reveal nu-
merous key insights which elucidate the high computational
efficiency of BAFFLE.

Primarily, in Figure 3(a) we observe a smaller variation in
gas costs for the 2 kB chunk size irrespective of budget sizes.
However, as the chunk size increases we see the variation
in gas costs also increase substantially for all budget sizes.
Second, despite the increased variation, the mean gas cost
appears to saturate for higher chunk sizes. We also observe
that for the budget size of 32 after the initial uptick there
is a relatively more pronounced downward trend for higher
chunk sizes. This trend can be clearly attributed to the
scoring and bidding mechanism incorporated in BAFFLE.
Since a higher chunk size implies lesser number of chunks,
there is relatively more competition among user devices
to update the same set of chunks. As a result for higher
chunk sizes, only user devices which are able to consistently
contribute higher scoring chunks will incur a higher gas
cost. Therefore, owing to its underlying scoring and bidding
mechanism, BAFFLE is able to achieve significant savings
in gas costs for the users.

We observe that in Figure 3(b) despite the budget size in-
creasing, the total push time increases only marginally ow-
ing to the scoring and bidding mechanisms. Therefore, we
can safely say that BAFFLE is successfully able to circum-
vent the computational bottleneck posed by the push step of
BAFFLE .

7.4 Scalability Analysis

Table 4. Scalability analysis with varying No. of Taxis

Taxis Average ASR (USD) Benefit (%)
16 14489.59 8.2
32 16547.20 23.6
64 18266.72 36.44

128 18414.48 37.55

We attempt to gauge the impact of the total number of ac-
tive user devices on the performance of BAFFLE. For this
experiment, we assumed each taxi having accumulated ap-
proximately 70 rides in each round for 62 rounds overall.
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Figure 3. Performance analysis with respect to Chunk Size and Budget
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Figure 4. Weak Scaling trends

Table 4 represents the ASR value and the ensuing benefit
percentages for 16, 32, 64 and 128 taxis respectively. From
the trends presented in Table 4 it is apparent that increasing
number of user devices results in a sizeable improvement
in the model quality. However, the trends in Table 4 also
reveal that the improvement in model quality eventually sat-
urates with increasing active devices potentially indicating
a convergence to a globally superior model.

Figure 4 depicts the trends pertaining to the gas costs as
well as the push time with varying active user devices in
Figures 4(b) and 4(a) respectively. Figure 3(a) shows a
reduction in gas costs with increasing number of active
devices. However, Figure 4(b) reveals little variation of
push time with increase in active devices.

The reduction in gas costs in Figure 4(a) can be attributed
to greater competition arising from an increase in total num-
ber of devices. Moreover, owing to a constant push time
depicted in Figure 4(b) we infer that increase in number of
participants leads to reduction in gas costs in BAFFLE.

7.5 Participation Level (PL) Analysis

In this experiment we study the impact of varying the PL on
the performance of BAFFLE with 64 taxis, approximately
70 rides per round and a total of 62 rounds. Figure 5 presents
results pertaining to PL values ranging from 5% to 75%.
Further, we also compare the RandomDFL case in which
devices update the global copy without any global coor-
dination. Figures 5(a), 5(b) and 5(c) represent the trends
pertaining to the growth in model quality, gas costs and the
total push time pertaining to varying PL in every round.

From Figure 5(a), we observe that the fastest convergence
of the model quality occurs in case of the RandomDFL
case. However, the convergence characteristics of BAFFLE
with a 5% PL value closely mirrors the RandomDFL case.
Overall, the trends in Figure 5(a) generally indicate that
a lower PL value leads to a faster convergence. Figure
5(b) shows that that a lower PL value in BAFFLE incurs
a lower gas cost as well. Trends similar to Figure 5(b) are
also exhibited in Figure 5(c) wherein a lower PL value in
BAFFLE corresponds to a lower total push time as well. We
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Figure 5. Performance analysis with respect to Participation Level (PL)

observe that in general, BAFFLE incurs barely half the gas
cost and push time as compared to the RandomDFL case.
In fact, BAFFLE outperforms the RandomDFL case by a
factor of more than 2 with a PL value of 5% both in terms
of the gas cost as well as the push time.

Since fewer devices are pushing to the global model copy
every round, the chances of multiple devices pulling the
same global model is significantly higher in case of a lower
PL value. This leads to greater stability in the decentralized
process which ultimately leads to a faster convergence for a
low PL value as shown in Figure 5(a).

BAFFLE incurs significantly lower gas costs compared to
the RandomDFL case owing to minimization of redundant
updates. Due to the decentralized round delineation and
a robust scoring and bidding process, devices only push
chunks that are among the best in the round. As a result,
collision among devices for the same chunk is completely
eliminated leading to a much lower gas cost and push time.

We now move towards the concluding our work and dis-
cussing future directions.

8 CONCLUSION AND FUTURE WORK

In this paper we investigate the use of the blockchain for
realizing a decentralized aggregator free FL mechanism. We
design and develop BAFFLE, a custom made blockchain
based framework for aggregator free FL. In our framework,
we successfully eliminate the role of a centralized aggre-
gator by effectively decentralizing the concepts of round
delineation, user device selection and model aggregation
with the help of an SC. Further, in order to circumvent the
computational restrictions imposed by the blockchain, we
employ an effective model partitioning and serialization
mechanism that enables independent and parallel model

updates. We orchestrate BAFFLE on a private Ethereum
blockchain network with a Solidity driven SC implementa-
tion.

We argue that the operational and computational benefits
of aggregator free FL has significant potential for solving
business problems for micro scale enterprises. We support
our claims by applying BAFFLE to a case study pertaining
to the ride sharing and taxi industry which serves as a perfect
example of a micro scale enterprises. Our case study utilizes
the BAFFLE framework to improve driver revenue based on
a DRL model that is collectively augmented by all drivers
using FL. We show that BAFFLE yields approximately a
40% improvement in driver revenues compared to non FL
approaches. We further show that despite being aggregator
free, BAFFLE’s result quality matches that of classical FL
schemes that require investment in an aggregator. Moreover,
BAFFLE performs significantly better compared to other
aggregator free approaches that are inspired by the current
state of the art.

The issue of aggregator free FL opens up new avenues for
research especially in the blockchain domain. Effective
aggregator free techniques for more complex models like
CNNs and LSTM will go a long way to enable wider adop-
tion of FL. Therefore, extending BAFFLE for handling such
models forms our immediate future work. We also wish to
investigate the use of differential privacy in an aggregator
free setting.

Our work shows that an aggregator free approach to FL
offers significant potential for revolutionizing small scale
organizations and their businesses by delivering quality ma-
chine learning models at lower costs. Driven by a robust de-
centralized platform like the blockchain, the benefits of FL
could impact a variety of domains leading to its widespread
adoption.
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A APPENDIX

A.1 Proof of Lemma 1

Proof. We know that for SGD the following relation holds:

ŵk+1
i = ŵ0

i − η
k∑

t=1

∇f(ŵt)i (2)

where ŵk
i is the estimate of the ith component of the weight

vector at round k, η is the learning rate. Further,∇f(ŵk)i
is ith component of the gradient estimated based on the
globally available weight vector.

In case of BAFFLE, we can say that

ŵk+1
i =

1

2
[ŵk

i + ŵk
i − ηBFL∇f(ŵt)i] (3a)

ŵk+1
i = ŵk

i −
ηBFL

2
∇f(ŵt)i (3b)

Therefore, if at the tth round, device jt is active and the ith

component is chosen, it follows that the expected value of
the weight vector is given by:

E[ŵk+1
i ] = ŵ0

i −
ηBFL

2
E

[
k∑

t=1

∇fjt(ŵt)i

]
(4)

At every round, we also assume that the probability of user
device jt being selected is denoted by αBFL. Given a bud-
get size B, the total number of chunks C, devices choosing
their chunks randomly subject to budget B, the probability
of picking the chunk containing the ith weight element, is
then determined as follows:(

C − 1

B − 1

)
/

(
C

B

)
=

B

(C −B + 1)C
(5)

Therefore, Equation 4 is equivalent to:

E[ŵk+1
i ] = ŵ0

i −
ηBFL

2

 k∑
t=1

αBFL

n∑
j=1

B∇fjt(ŵt)i
(C −B + 1)C


(6)

which leads to:

E[ŵk+1
i ] = ŵ0

i−
B.ηBFLαBFL

2(C −B + 1)C
E

 k∑
t=1

n∑
j=1

∇fjt(ŵt)i


(7)

On the other hand, with aggregator driven FL, with L user
devices aggregated in each round, we can similarly state:

E[ŵk+1
i ] = ŵ0

i −
ηFL.αFL

L

 k∑
t=1

n∑
j=1

∇fjt(ŵt)i

 (8)

where αFL, ηFL is the probability of choosing a device and
the learning rate of aggregator driven FL respectively.

Therefore, equating 7 and 8, we can say that with a learning
rate of

ηBFL =
2.C.(C −B + 1)αFL

B.L.αBFL
.ηFL (9)

BAFFLE is equivalent to classical FL with learning rate
ηFL.

A.2 Consensus Protocols

As an extension of Section 3.2, we continue the description
of popular consensus protocols powering the blockchain.

Proof of Authority (PoA): PoA uses a set of authorities,
nodes that are explicitly allowed to create new blocks and
secure the blockchain. A validator’s identity performs a
key role in this consensus mechanism. The block needs to
be signed off by the majority of authorities, which makes
the block become a part of the permanent record of the
distributed ledgers. PoA is better suited for consortium
settings as it is more secure, less computationally intensive,
more performing, and more predictable.

Proof of Work (PoW): This consensus algorithm is used to
select a miner for the next block generation. The idea behind
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Table 5. SC Attributes in BAFFLE
Attribute Description
Model ID Unique identifier assigned for every FL task by the SC

Round Registration Details List of users with submitted bids for the upcoming round
Participation Level The minimum number of users with submitted bids required to begin a round

Chunk Core A data structure for every chunk holding: last updated time;
Array last user to update; set of submitted scores & their owners

this PoW algorithm is to solve a complex mathematical
problem that requires a lot of computational power and
thus, the first node who solves the problem is eligible for
mining the next block with a reward. Bitcoin adopts this
PoW consensus mechanism.

Proof of Stake (PoS): In this type of consensus algorithm,
the nodes called validators look into blocks to be added
to the chain and invest in the coins of the system as stake
instead of solving a complex math problem. The validators
bet on the blocks that would most likely be added to the
chain. Based on the actual blocks added to the Blockchain,
all the validators get a reward in proportion to their bets and
their stake increases accordingly. In the end, a validator is
selected to create a new block based on their economic stake
in the network. This is the most common alternative to PoW
and Ethereum has shifted from PoW to PoS.

A.3 Smart FL Contract Data Structure

The Smart FL Contract follows contract-oriented design
principles that required to function on the blockchain net-
work. Fields of significance contained in the Smart FL
Contract are listed in Table A.1.

A.4 Centralized Deep Batch Q Learning

Algorithm 3 Centralized Deep Neural Fitted Q
for k = 0 . . . do

observe new ride setHk

pull latest available model Q from blockchain

perform averaging Qk ←
Qj

k+Q

2

update Q̃j
k based on Equation 1a

locally train Qj
k+1 via Equation 1b

end for

Algorithm 3 details the centralized batch Deep Q Learning
for improving driver revenue. It starts with observation of a
new ride set every epoch. For every ride in the ride set, the
existing Q-value estimate is updated with the fare collected
for the ride and a discounted future reward. The discounted
future reward is based on the action that gives highest Q
value originating from the destination state. Based on the
observed set of rides, a Deep Neural Network (DNN) is

used to calculate the next Q function estimate.

A.5 Random Decentralized FL (RandomDFL)

Algorithm 4 Randomized Decentralized Deep Neural Fitted
Q

for taxi: j = 1 . . . P do
for k = 0 . . . do

observe new ride setHk

pull latest available model Q from blockchain

perform averaging Qk ←
Qj

k+Q

2

update Q̃j
k based on Equation 1a

locally train Qj
k+1 via Equation 1b

push random set of chunks Ck ⊆ C, |Ck| = B
end for

end for

In the randomized version represented in Algorithm 4, the
SC is considered to be naive. User devices are free to update
any chunks subject to their own budget values. In this
naive randomized version, some chunk updates are bound
to get wasted owing to the fact that they may be overwritten
by another user device’s contribution before the previous
update has had a chance to be read by the other agents.


