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Abstract—Modern cyber-physical systems are increasingly
complex and vulnerable to attacks like false data injection aimed
at destabilizing and confusing the systems. We develop and eval-
uate an attack-detection framework aimed at learning a dynamic
invariant network, data-driven temporal causal relationships
between components of cyber-physical systems. We evaluate the
relative performance in attack detection of the proposed model
relative to traditional anomaly detection approaches. In this
paper, we introduce Granger Causality based Kalman Filter with
Adaptive Robust Thresholding (G-KART) as a framework for
anomaly detection based on data-driven functional relationships
between components in cyber-physical systems. In particular, we
select power systems as a critical infrastructure with complex
cyber-physical systems whose protection is an essential facet of
national security. The system presented is capable of learning
with or without network topology the task of detection of false
data injection attacks in power systems. Kalman filters are used
to learn and update the dynamic state of each component in the
power system and in-turn monitor the component for malicious
activity. The ego network for each node in the invariant graph
is treated as an ensemble model of Kalman filters, each of which
captures a subset of the node’s interactions with other parts of
the network. We finally also introduce an alerting mechanism to
surface alerts about compromised nodes.

Index Terms—Cyber-Physical Systems, Anomaly Detection,
False Data Injection Attacks, Bad Data Detection, State Esti-
mation, Bayesian Filtering, Kalman Filter, Dynamic Invariant
Network, Robust Estimation

I. INTRODUCTION

Cyber-physical systems are becoming more and more com-
plex especially with IoT (Internet of Things) devices integrated
into various platforms as in digital-twin systems that represent
the physical devices using data. The power grid in particular is
a representative example of a complex cyber-physical system
consisting of multiple power generation, transmission, and
distribution components all interacting with each other to
maintain the stability of the system in a large geographic
area. The security and reliability of the power system has a
significant impact on the smooth functioning of society.

To ensure data fidelity, bad data detection (BDD) tech-
niques are employed by the control center to filter data
before it is used for state estimation purposes. If however,
false measurements are able to circumvent the BDD layer,
they could adversely affect the outcome of state estimation,
thus misleading the automatic control algorithms, resulting in

catastrophic consequences such as brownouts or blackouts in
a power grid.

The security of a system as complex as the modern elec-
tric grid is non-trivial to ensure as the large number of
inter-dependent components render the system vulnerable to
cyber-attacks. One such type of attack involves malicious
entities manipulating data from devices like smart meters,
being transmitted to the control center for state estimation.
Essentially such an attack comprises of the attacker trying
to inject an attack vector into a subset of devices they have
successfully compromised that transmit diagnostic data to the
control center. The effect of such an attack is that the control
center receives data that is not representative of the true state
of the components transmitting the data and hence such an
attack is termed a False Data Injection (FDI) attack.

Traditional BDD approaches based on weighted least
squares techniques are susceptible to stealthy FDI attacks as
outlined in [1]. The authors in [1] outline two different types
of FDI attacks, namely random FDI attacks and targeted FDI
attacks. In this paper, we focus on detecting random FDI
attacks although the proposed model also holds potential for
detecting targeted FDI attacks. We showcase how the proposed
approach is able to detect stealthy random FDI attacks that
the traditional weighted least squares based state estimation
procedures are unable to detect according to [1].

In the context of an FDI attack, the Jacobian matrix has
been compromised and the attacker has complete access to it
[1]. This is imperative because the Jacobian matrix is used
to estimate the values of phase angles and voltages of the
buses from the active and reactive power measurement values
respectively. Naturally, if an attacker were to inject false values
at certain points in the active or reactive power readings
before they were recorded at the control center, the subsequent
estimates of voltage and phase angle would be affected. This
process of FDI could be used by the attacker to govern how
certain processes occur in the power system or to destabilize
the system.

Hence, if BDD methods were only based on system topol-
ogy and weighted least squares procedure as is the case with
BDD in traditional power systems, it would be relatively sim-
ple for the attacker (who now has an inherent understanding
of the line and component properties) to launch an attack that
would be stealthy and pass the BDD procedure. It is here that



our procedure of data driven invariant learning models comes
into play.

We address the problem of FDI attacks by proposing a
dynamic invariant network with Granger Causality based
Kalman Filter with Adaptive Robust Thresholding (G-KART),
leveraging latent functional relationships between the com-
ponents in a power system that may not necessarily be
represented by explicit power flow equations. By using data-
driven learning techniques for state estimation, we are able
to model a wider array of component-level relationships at
any given time because the pair-wise data driven invariant
learning is not restricted to learning relationships only between
components that are directly connected in the power system
topology.

Instead of considering topological relationships between
components, we learn statistically significant predictive causal
relationships between any pair of components in the power
system through an inductive learning procedure. We model the
state of each component in the power system as an aggregation
of individual pairwise functional relationships learned between
said component and other components of the power network
using the meter measurements obtained from them.

Our contributions are as follows:
• We propose a data-driven dynamic invariant learning

framework with a temporal causal network learning based
approach to detect stealthy FDI attacks in power systems.

• We introduce a novel adaptive robust thresholding pro-
cedure to accommodate for effective anomaly detection
even in the context of noisy training data laden with
outliers and gradual data distribution changes.

• We augment the invariant learning approach proposed in
[2] to be governed by using a Granger Causality F-test to
learn only statistically significant causal relationships and
eliminate the need for manual thresholding (we eliminate
the minimum acceptable threshold τ as defined in [2]).
The F-test however is flexible enough to accept lag values
and significance levels if the user wishes to specify them
but will return an invariant network without either of
these specified.

II. BACKGROUND AND RELATED WORK

A. Background

1) Power System: A power system is defined as a complex
network consisting of generation centers, transmission lines
and transformers [3]. A power system has a matrix termed
the Jacobian H ∈ Rm×n that is constructed depending on
line impedances and the network topology of a power system.
The variable m represents the number of meters providing
measurements of active power P or reactive power Q flowing
from or to a bus (Pf , Qf ), and n represents the number of
state variables to be estimated. A control center is employed
to monitor and control the various operations of devices in the
power systems.

2) State Estimation: To ensure resilient operation of power
systems even when some components fail, power engineers
employ meters to monitor different parts of the network and

collect their readings at the control center. These meter mea-
surements (active power P , and reactive power Q) recorded
at each bus are used to estimate the states of power system
variables (voltage V and phase angle θ) of the buses in the
power system.

If we define x = {x1, x2, .., xn} to be the set of n state
variables and z = {z1, z2, ..., zm} as the m bus measurements
recorded by the meters, the goal of the state estimation
problem is to estimate the values of the vector of state
variables x using the measurements z. If the Jacobian matrix
is represented as H, and measurement errors are defined by
e = {e1, e2, .., em}, then the state estimation problem can be
defined as in equation 1 wherein the goal is essentially to find
a vector x̂ that is a good approximation of the vector of state
estimates x.

z = Hx̂ + e (1)

If measurement noise is assumed to be normally distributed
with zero mean, then equation 2 represents the solution to the
state estimation problem [1]. Here, the matrix W ∈ Rm×m is
a diagonal matrix where each entry wii is a reciprocal of the
variance of meter error of meter i.

x̂ = (HTWH)−1HTWz (2)

3) Bad Data Detection (BDD): Many techniques for BDD
have been proposed to protect power systems [4], [3]. The
L2 norm of the measurement residual ||z−Hx̂||2 has es-
sentially been proposed as a BDD procedure. Essentially if
||z−Hx̂||2 > τ for some expert defined threshold τ , the BDD
procedure indicates the presence of bad measurements.

4) False Data Injection (FDI) Attacks: For a power system
with m measurements and n state estimates, the measure-
ments and estimates are related through the Jacobian matrix
H ∈ Rm×n. For our purposes, we assume the attacker has
complete knowledge of the composition of matrix H. This
can be obtained by compromising the control center network
or through social engineering or other such approaches. We
consider the scenario of Random FDI Attacks, in which the
goal of the attacker is to generate a random attack vector
a ∈ Rk×1 for any subset of k compromised meters to cause
a wrong state estimation of state variables at the control
center [1]. For ease of notation we assume a ∈ Rm×1 for
a subset of k compromised meters where values at all m− k
indices of uncompromised meters are 0 in a. If za = z + a
then it has been shown that any vector a can be injected
into measurements to circumvent the L2-norm based BDD
procedures as long as a = Hc where c is any arbitrary non-
zero vector. A stealth attack vector a is a vector in the image
of linear transformation H.

In contrast to traditional BDD approaches where the matrix
H is used, we ignore H and instead focus on learning
purely data-driven functional relationships between the various
components in a power system that we refer to as an invariant
graph. This has two effects:



1) It ignores the system topology and properties to a certain
extent and hence the attacker now only has partial
information (as he only has access to the Jacobian
matrix H of the system and is unaware of the functional
relationships learnt by the invariant network.)

2) Any component in the network could essentially be con-
nected to any other component in the network through
a functional relationship. So, to launch a successful
attack, the attacker must on average compromise more
components for the FDI attack to remain undetected.

The aforementioned effects ensure that the FDI attack is no
longer always stealthy and even if a stealth attack is launched,
the invariant network significantly increases the average cost
of the attacker to launch successful stealthy FDI attacks.

B. Related Work

The National Communications System document on
SCADA systems [5] alludes to the risks posed by FDI at-
tacks on SCADA systems and gives a high priority to the
development of BDD systems for FDI attacks.

There have been many efforts undertaken to develop FDI
attack detection schemes in power systems with different at-
tack scenarios to aid the development of more robust detection
procedures. The authors in [6] propose a “least-effort” attack
on a power system [1] as mentioned previously in addition
to developing two separate paradigms of stealthy FDI attacks
also develop a low-cost attack strategy wherein the attacker
can de-stabalize the system compromising a minimal number
of components. The authors in [7], [8], [9], [10] propose
alternate formulations for detecting FDI attacks in a DC power
setting. Another related problem that is prone to FDI attacks is
one of energy theft detection problem, as outlined by [11], in
which they describe methods both for power theft and possible
detection techniques.

Generic surveys of recent anomaly detection techniques are
provided in [12], [13]. In [13], for instance, multiple intelligent
strategies are introduced such as a game-theoretic approach
to achieve a critical equilibrium at which the impacts from
multiple attackers can be cancelled. In addition, an exhaustive
survey for cyber security in the smart grid, along with a good
description of the structure of the smart grid is provided by
[14].

In [2], [15], [16], data-driven cyber-physical attack detection
technologies are introduced in which they infer underlying
relationships among components by analyzing the sensor
measurements of the system. We extend the framework by
incorporating a dynamic invariant learning approach that is
proposed in Section IV.

III. PROBLEM FORMULATION

Let us assume we have a set of n time series S =
{X1, .., Xn} where each Xi represents a sensor at bus i mea-
suring a particular metric like active-power flowing out from
bus i (Pfi ) in a power system. Xt

i represents a measurement
recorded at a particular bus i at time t. Each component in

the power system is affected either directly or indirectly by
the other components.

Modeling pair-wise component relationships in sensor net-
works has proven useful in anomaly detection tasks in cyber-
physical systems as demonstrated in [2], [17], [16].

A. Dynamic Invariant Graph Construction & Model Learning

1) Temporal Causal Networks: We model the pair-wise
component relationships to construct a Temporal Causal Net-
work as a dynamic invariant network. Learning temporal
predictive causality is a popular concept in many fields
like biology, social science and climate science. Although
many approaches based on randomization, cross-correlation
etc. have been adopted [18], [19], [20], we adopt a popular
regression-based method for uncovering temporal causality
called Granger causality [21] for construction of the causality
graph.

The basic idea as enumerated in [22] states that a variable
Xj is the cause of another variable Xi if the past values of Xj

are helpful in predicting the future values of Xi. If we were
to consider the two autoregressions in equations 3 and 4:

Xt
i =

L∑
l=1

alX l−1
i (3)

Xt
i =

L∑
l=1

alX l−1
i + blX l−1

j (4)

with L being the maximum time lag, Xj is said to Granger
cause Xi if the predictions of equation 4 are significantly better
than predictions of Xi by equation 3.

For each pair of time series in S, we utilize the F-test to
determine statistical significance wherein if the null hypothesis
(Xj does not cause Xi) is discounted with a confidence level
of higher than α, we assume that Xj has a relationship of
predictive causality with Xi denoted by a directed edge from
Xj to Xi in the temporal causal network (a.k.a invariant net-
work). Here, α usually called the significance level indicates
the probability of type 1 errors i.e. the probability of wrongly
indicating that Xj causes Xi. In order to retain only strong
relationships of temporal causality, we set α = 0.01.

The temporal causal network learning procedure culminates
yielding a graph G = (V,E) wherein an edge eij ∈ E from
node vi to vj |{vi, vj} ∈ V indicates that time series Xi has a
temporal causal effect on time series Xj .

2) Kalman Filter Modeling: Once the temporal causal
network G = (V,E) is learned, each predictive causal rela-
tionship eij ∈ E in G is modeled with a Kalman Filter. Each
node vj ∈ V represents a bus in the original power system
and has a set of k Kalman filters monitoring its state at each
time step where k represents the number of incoming edges
(temporal causal relationships) that node vj is involved in. A
Kalman filter Kij represents the model monitoring the state
of node vj at each time step, using the historical data from
Xi and Xj .



X̂t
ij = aiX

t−1
ij + ajX

t−1
ji + ε (5)

The predictions of model Kij at each time step t are
calculated according to equation 5. Here, the predicted state
of the measurement at bus j at time t is represented by
X̂t

ij . ε represents the prediction error and is assumed to be
normally distributed. Xt−1

ij and Xt−1
ji are state estimates for

the states of Xj , Xi respectively at time t − 1. The weights
A = [ai, aj ] are estimated from a subset of the data using
expectation maximization. A detailed account of the Kalman
filter formulation has been provided by [23].

B. Anomaly Detection with Adaptive Robust Thresholding

1) Constant Threshold: If X̂t
ij and X̄t

j represent the pre-
dicted and actual values respectively of busj at time t, a
particular invariant relationship eij ∈ G, eij is said to be
broken if equation 6 is violated.

|X̄t
j − X̂t

ij | < ε0ij (6)

This residual based anomaly threshold used by [24] is
adopted in an effort to reduce false positive rates of broken in-
variant relationships in the graph G during testing. According
to [24], ε0ij can be estimated from the residuals in the training
phase to be 10% larger than the tolerance of residuals as given
by equation 7.

ε0ij = 1.1 ∗ argr{Prob(|X̄t
j − X̂t

ij | < r) = 0.995} (7)

i.e., (7) chooses a value r so that 99.5% of the residuals
observed on the training data are smaller than r, and assigns
ε0ij to be 10% larger than r.

2) Adaptive Robust Thresholding: However, in the context
of FDI attacks, the assumption that the training data is free of
a significant portion of outliers is not a sound assumption to
make. Hence, we use data laden with noise both for training
and testing due to which the models and thresholds learned
need to be robust. Unfortunately the thresholding methodology
in equation 7 is susceptible to yielding an overestimated
anomaly threshold as it is sensitive to noise and outliers.

We augment the learned thresholding procedure with an
adaptive component in the testing phase as outlined in equation
8.

εtij = β ∗ ε0ij + (1− β) ∗ µ|t−w:t| (8)

εtij represents the adaptive anomaly threshold for time step
t for relationship eij in the temporal causal graph G. The
adaptive threshold is a convex combination of the constant
residual based anomaly threshold learned during the training
phase and the term µ|t−w:t| which is a rolling window based
median1 of the residuals in the past window of size w.
This new procedure is capable of yielding good performance

1We also develop and test a model which uses the rolling mean of the
residuals, instead of rolling median, solely for baselining purposes to be
detailed in the results in section VI.

Algorithm 1: Bi-variate Temporal Causality Model Train-
ing
Input : S = {X1, .., Xn}: Input time series,

ts: Training Period Start,
te: Training Period End,
G = (V,E): Temporal Causality Inv. Network

Output: K: Temporal Causality Model Matrix
1 K ={};
2 for eij ∈ E do

/* Fit Kalman Filter using Xj and Xi

to estimate state of busj */
3 Kij = KalmanFilter(Xts:te

j , Xts:te
i );

4 K = K ∪Kij ;
5 end

even with noisy data by adapting the anomaly threshold to
underlying changes in the data distribution. The procedure is
robust due to the inclusion of the adaptive median thresholding
component as the median is known to be a robust statistic.

Equation 9 represents a modified version of equation 6 in
the context of adaptive thresholding.

|X̄t
j − X̂t

ij | < εtij (9)

C. Problem Formulation Summary

With more accurate predicted values X̂t
ij and adaptive

threshold εtij , we try to increase or maintain a good range of
the True Positive Rate (TPR) for FDI attack detection when the
systems are compromised with random attacks. At the same
time, we want to minimize the False Positive Rate (FPR) as
much as possible since it is also equally important not to be
bothered by the overfitting issues as otherwise critical attacks
could be overlooked.

IV. FDI ATTACK DETECTION FRAMEWORK

We extend the framework described in [2], [16] by incor-
porating Granger-causality based invariant learning to model
the power of predictive causality of different components in
the power network. We also augment the anomaly detection
procedure with an adaptive robust thresholding mechanism.

A. Model Training

In the model training phase, we describe how to produce a
Bi-Variate Temporal Causality Model as a Temporal Causality
Model Matrix. A Kalman filter Kij represents the model
monitoring the state of node vj at each time step, using the
historical data. Based on Algorithm 1, the set K of Kalman
Filters is obtained as an output.

Multiple Kalman filter models are trained to monitor the
state of each bus in the power network, and the training process
is governed by the aforementioned Granger Invariant Network,
i.e. for each directed edge (from a source node to a sink node)
in the invariant network, we train a Kalman Filter to predict the
state of the sink node at the next time step, given historical data
from the sink and the source nodes. At the end of the training



Algorithm 2: Ensemble Anomaly Detection & Alerting
Input : S = {X1, .., Xn}: Input time series,

te: Testing Period Start,
tend: Testing Period End,
ξ = 0.5: Alert Threshold,
G = (V,E): Temporal Causality Network,
K: Temporal Causality Model Matrix

1 for t | te < t < tend do
2 for vj ∈ V do
3 votes = 0;
4 Let E(vj) be edges connected to vj ;

/* Iterate over all incoming edges
of vj */

5 for eij ∈ E(vj) do
6 X̂t

ij = Kij .predict(X̄t−1
j , X̄t−1

i );
7 Calculate the adaptive robust threshold εtij

based on eq. (8);
8 if |X̄t

j − X̂t
ij | > εtij then

9 votes += 1;
10 end
11 end
12 scorej = votes

|E(vj)| ;
13 if scorej ≥ ξ then
14 Invoke Alert: FDI at vj at time step t;
15 end
16 end
17 end

process, a node with k invariant relationships essentially has
an ensemble of k different Kalman filters monitoring its state
at each time step.

B. Ensemble Anomaly Detection and Alerting Framework

At any time step, if the error in state prediction of an
invariant model is greater than a pre-calculated threshold, the
invariant edge between the two nodes in question is said
to be broken/invalidated. We can consider that in this case,
one of the k models in the ensemble for the sink node has
predicted that an anomaly has occurred at the current time
step in the sink node. If a majority (> 50%) of the bivariate
invariant relationships for a particular node in the system are
invalidated, we declare the component to have experienced an
anomaly. Hence we employ a majority-voting ensemble model
for anomaly detection at each bus.

The procedure of the ensemble anomaly detection and
alerting framework is described in Algorithm 2. Consider a bus
i in the power system that has k temporal causal relationships
(incoming edges) monitoring its state. This signifies that there
are k Kalman filter models (K∗i) offering predictions for the
state of bus i at each time step t. Each of these models has a
concomitant value for the adaptive anomaly threshold which
along with the actual measurement at busi at time t is used to
determine whether or not the edge eji is broken for each of
the k invariants. If greater than 50% of the invariants of busi

(a) The network topology of a traditional IEEE 33-bus network.

(b) The Bivariate Granger Invariant Network modeling the
active power flowing among IEEE 33-bus system.

Fig. 1: IEEE 33-bus network and its invariant graph.

are broken, a FDI attack is said to have occurred at busi at
time t and an alert is sent out.

This is similar to a majority voting paradigm in ensemble
modeling. Hence, we might consider the state estimation
and anomaly detection framework for each bus in the power
system, as a majority voting based ensemble model that sends
out alerts if a majority of the temporal causal relationships of
a particular bus are broken at a particular time step.

V. EXPERIMENTAL RESULTS

A. Dataset Description

We conducted experiments on an IEEE 33-bus dataset con-
sisting of one generation station (Bus1), a PV setup attached
to Bus33 and an electric vehicle charging station at Bus10.
The network topology of the IEEE 33-bus network has been
depicted in Figure 1a. For the purposes of this experiment,



(a) Attacks over the entire time frame.

(b) Attacks between t = 4500 and 5000.

Fig. 2: Random FDI attack on active power flowing from Bus9
to Bus10.

we focus on the active power flowing out of each bus in the
IEEE 33-bus network denoted as Pf . We denote Pf flowing
from Bus i to j as Busi-Busj . Figure 1b represents the
data-driven functional relationships learned between buses that
may be explicitly or implicitly connected. In this case, it
shows the Bivariate Granger Invariant Network modeling the
active power flowing out of each bus (Pf ) in an IEEE 33-bus
dataset. Figure 1b indicates each node Busi-Busj signifies
measurements of active power flowing from Busi to Busj .

B. Random FDI Attack

We injected anomalies on the synthetic data of active power
flowing from each branch (Pf ) at specific points (depicted as
red dots in Figure 2).

We first randomly select 30% of the 33 buses to be attacked.
These buses can be considered to have been compromised
by the attacker. We then design an attack vector using the
lightweight attack vector construction method for stealthy
random FDI attacks as outlined by [1]. We developed a FDI
mechanism that randomly injects the chosen attack vector at
different time steps in each of the compromised buses so
the total attack percentage at each compromised bus is δ.
We discuss results for δ = 10% i.e. when 10% of the data
points have been affected by false or noisy data injected by
the attacker.

We first baseline by using popular anomaly detection al-
gorithms namely, One Class SVM and Isolation Forest. The
performance comparison between the baselines and G-KART
have been depicted in Table I. We observe that the G-

Metric
Method G-KART One Class

SVM
Isolation

Forest
FPR 0.0658 0.467 0.285
TPR 0.356 0.39 0.322

F1-Score 0.141 0.0717 0.0617

TABLE I: Performance Comparison among G-KART, One
Class SVM, and Isolation Forest techniques for a random FDI
attack. The FDI attack percentage is 10% of the time steps
across 30% of the buses in the IEEE 33-bus system using the
Pf metric.

Metric
Method G-KART G-KCT G-KAT

FPR 0.0658 0.0076 0.048
TPR 0.356 0.1309 0.333

F1-Score 0.141 0.0754 0.14

TABLE II: Performance Comparison with three different
thresholding methodologies (G-KART, G-KCT, G-KAT) for
a random FDI attack. The FDI attack percentage is 10% of
the time steps across 30% of the buses in the IEEE 33-bus
system using the Pf metric.

KART model, which is the dynamic invariant learning model
we propose in this paper based on Granger causality based
adaptive robust thresholding, has the highest F1-score that
is a combination of the precision and recall of the model.
The G-KART also has a much lower False Positive Rate than
the Isolation Forest and One Class SVM models which is an
essential characteristic for any anomaly detection procedure.

VI. DISCUSSION

We discuss the performance of detection frameworks of
FDI attacks using data distribution analyses. In Figure 3a,
the green curve showcases the original data distribution of
active power (Pf ) from Bus9 to Bus10 and the yellow curve
showcases the data distribution with false data injected. Figure
3b indicates clean data distribution in green and noisy data
distribution in yellow of only those time steps when false
data was injected into the active power flowing from Bus9
to Bus10. Figure 3c presents the classification performance
of the 1-class SVM model by depicting the distributions of
the True Positive (in black) and the False Positive (in cyan)
classifications compared with the full data distribution for a
particular bus (in yellow). Figure 3d showcases a similar true
positive, false positive classification distribution along with the
true data distribution. We notice that in both the case of the
One-Class SVM, and the isolation forest, the true positive and
false positive distributional overlap indicates the inability of
both these models to effectively detect FDI attacks.

1) One Class SVM and Isolation Forest: Figures 3a-3d and
Table I indicate that the One-class SVM and Isolation Forest
algorithms are unable to perform effectively in the context of
stealthy random FDI attack detection. Traditional SVMs are
maximum margin classifiers where a separating hyperplane
is learned between each pair of distinct classes such that the
distance separating the classes is maximized. In the same vein,
One class SVMs learn a single class which they consider the
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(a) The original data distribution of active power (Pf ) from
Bus9 to Bus10 and the data distribution with false data injected.
We notice that by the nature of FDI attacks, the global densities
of active power before and after attack doesn’t differ much.
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(b) The clean data distribution and noisy data distribution
visualized only for those time steps (attack time steps) when
false data was injected into the active power flowing from Bus9
to Bus10. The yellow curve indicates the density plot of active
power distribution at Bus9-Bus10 for only the attack time steps.
The green curve indicates the distribution of the attack time
steps before the attack vector was added. We notice a significant
discrepancy between the local densities.
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(c) The classification performance of the 1-class SVM model by
depicting the distributions of the True Positive (in black) and
the False Positive (in cyan) classifications compared with the
full data distribution for a particular bus (in yellow).

(d) The classification performance of the Isolation Forest by
depicting the distributions of the True Positive (in black) and
the False Positive (in cyan) classifications compared with the
full data distribution for a particular bus (in yellow).

Fig. 3: Analyses with data distribution.

normal class. In our case, this class should ideally contain all
instances where there is no attack. All other instances that
do not belong to the normal class are deemed anomalies. In
our case, this should ideally contain all time steps where false
data was injected into a particular bus. If we observe Figure
3a, we notice that overall, there is no discernible difference
in the densities of the original data and the original data with
false data injected. However, a significant difference in the
plotted densities exists in Figure 3b, wherein only the subset
of points at which false data is injected is considered, primarily
to showcase that the attack vector injection does indeed have
a local effect on the data distribution.

However, if we observe the false positive (cyan) and true
positive (black) curves, the significant overlap between them
in Figures 3c and even more so in 3d, indicates that the
One class SVM and Isolation Forest are unable to effectively
discriminate instances of FDI attack data from instances where
the data is free from attack. This is primarily owing to there
being no discernible change in the global distribution when
false data is injected but only a change in the local property
of the time series around the region of attack. The inability of
these models to capture this local data infidelity accounts for
their high false positive rate and concomitantly low f1-score
depicted in Table I. This inability to discriminate between

true and false data distributions is because of the subtle
perturbations in the time series that are caused by stealthy
FDI as indicated in Figures 2a and 2b.

Figure 2a depicts the full time series of an example bus
i.e. the active power flowing from Bus9 to Bus10 with false
data points depicted as red dots. The green box highlights the
snapshot of the full time series that has been depicted in the
Figure 2b, showcasing a subset of the time series. In this figure,
we are able to observe that while some instances of random
FDI cause significant perturbations in the data distribution,
there also exist a number of time steps in which the resulting
false data point lies within the global data distribution but
does not conform to the local time series property. Hence, we
argue that, a dynamical system model like the Kalman filter
is able to model this temporal variation in the time series as
opposed to density based anomaly detection as in the case
of One class SVM and Isolation Forest which are unable to
capture this local temporal variation. This in addition to the
adaptive robust thresholding based on the rolling median leads
to the superior performance of the proposed G-KART model.

2) G-KCT, G-KAT, G-KART: We experimented with three
different thresholding schemes and hence developed three
different models. The performance comparison of the three
models in the FDI attack detection is depicted in Table II.

The first model Granger Causality based Kalman Filter with



Constant Thresholding (G-KCT) uses equation 6 and 7 for
constant thresholding and hence is unable to adapt to changes
in data during the testing phase as the threshold once set in
the training phase does not get updated and the model is also
affected by noise in the data.

The second model Granger Causality based Kalman Filter
with Adaptive Thresholding (G-KAT) uses 8 and 9 for updating
the threshold in the testing phase. In this case instead of the
rolling median, the term µ|t−w:t| is actually a rolling mean
of the residuals in the past window of size w. This model
although an improvement over G-KCT, is perturbed by the
noise in the training and testing phases due to the non-robust
nature of the mean statistic.

The third model Granger Causality based Kalman Filter
with Adaptive Robust Thresholding (G-KART) also uses 8 and
9 for adaptive thresholding. The thresholding methodology in
this case is more robust compared to the previous methods
because we use the median which is a robust statistic. Hence,
it is less perturbed by noisy data and is able to adapt to true
changes in the underlying data distribution. It must be noted
that the only difference between G-KAT and G-KART has to
do with the way the adaptive thresholding has been calculated
i.e using the rolling mean and rolling median respectively.

VII. CONCLUSION AND FUTURE WORK

We have proposed a novel robust anomaly detection pro-
cedure for detecting false data injection attacks in power
systems based on the dynamic invariant learning approach as a
temporal causality network learned using the Granger causality
framework. It is shown through the simulation results that not
only this method maintains the high standard of TPR that
is competitive among other techniques that are designed to
detect FDIs, but also FPR is significantly reduced compared
with One Class SVM and Isolation Forest approaches. In
addition, with the adaptive robust thresholding approach, we
could significantly improve the TPR while maintaining the
low FPR that is the advantage of the FDI detection with the
dynamic invariant network analysis.

We have currently showcased preliminary results of the
procedure on a single metric of an IEEE 33-bus power
system. We further wish to evaluate the proposed framework
against more sophisticated algorithms and other evaluation
metrics like the NAB (Numenta Anomaly Benchmark) score
and incorporate more sophisticated attacks like targeted FDI
attacks and Denial-of-Service (DoS) attacks. Although the FDI
detection framework has been applied to energy management
of power systems as a critical infrastructure, there would be
many digital twin platforms with which the dynamic invariant
analysis is integrated such as factory management systems and
automobile manufacturing management systems.
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