
Tie-set Based Fault Tolerance for Autonomous
Recovery of Double-Link Failures

Kiyoshi Nakayama, Kyle E. Benson, Vahe Avagyan, Michael B. Dillencourt, Lubomir F. Bic, Nalini Venkatasubramanian
Department of Computer Science, University of California, Irvine, CA 92697-3425, USA

Email: kiyoshi.nakayama@ieee.org, {kebenson, vavagyan}@uci.edu, {dillenco, bic, nalini}@ics.uci.edu

Abstract—In this paper, we propose a mechanism for coping
with double-link failures in an autonomous and distributed
manner. We call it Tie-set Based Fault Tolerance (TBFT) be-
cause it utilizes tie-sets, which represent a set of the edges
comprising a loop within the graph that represents the network.
An autonomous distributed control method based on dividing a
network into a set of tie-sets, whose union covers every edge in the
network, has been verified to be more effective than traditional
tree-based restoration techniques in case of single link failure.
The proposed method efficiently and gracefully handle double-
link failures and also decrease the communication overhead
incurred during network configuration. We demonstrate these
results by simulating and comparing TBFT with the traditional
approach of using Rapid Spanning Tree Protocol (RSTP).

Keywords-graph theory, tie-set, loop, double-link failures, fault
tolerance, autonomous recovery

I. INTRODUCTION

Double-link failures happen when two links failed simul-
taneously within a distributed system. While it is extremely
unlikely for two links to truly fail at precisely the same time,
double-link failures include two single-link failures that occur
in such rapid succession that the system cannot determine
which occurred first. These events are likely to transpire during
geographically correlated physical phenomena such as natural
disasters (e.g. earthquakes), cosmic events (e.g. solar storms),
and deliberate attacks (e.g. low-altitude nuclear detonations).
This type of failure is more difficult for a distributed system
to recover than a single-link case.

Many methods have been proposed to solve link failure
problems by routing the messages in a fault tolerant manner.
Spanning Tree Protocol (STP) [1] is a technique that builds a
spanning tree within a mesh network of connected Ethernet
switches and disables those links that are not part of the
spanning tree, leaving a single active path between any two
network nodes. Rapid Spanning Tree Protocol (RSTP) [2]
provides significantly faster spanning tree convergence when
failures happen [3], [4]. The authors of [5], [6] show that RSTP
is applicable to recover failures in ring topology as well.

Starting from SONET rings [7], [8], various failure recovery
schemes have been developed based on Pre-configured cycles
(p-cycle) by applying cycle covering schemes such as [9], [10],
[11]. These techniques allow fast recovery and do not require
significant capacity redundancy. Some mechanisms based on
p-cycles have been proposed to protect span and node failure
[12], networks from multiple sequential [13], simultaneous
link failures [14], and both at once [15]. While protection

methods based on p-cycles have led to sophisticated techniques
and solutions, “preconfigured” cycles cannot dynamically re-
structure the formation of cycles. This becomes crucial when
solving multiple-link failures, especially in large-scale systems
and when one cycle contains more than one failure.

Similar to p-cycles, tie-sets logically divide the graph rep-
resentation of the physical network into a set of cycles with
dynamic configuration in a “distributed” manner. A core idea
of distributed control method to handle a single-link failure
based on tie-set graph theory [16], [17] was introduced in
[18], [19]. The tie-set based restoration method for single link
failure was a simple approach and was not able to handle over
one point link failure as the recovery scheme of more than one
failure requires a much more sophisticated analysis, problem
formulation, and synchronization mechanisms. Tie-set Based
Fault Tolerance, so called TBFT in this paper, demonstrated
a superiority over the traditional tree-based technique with
carefully designed detection and synchronization techniques.
Furthermore, the strength of this technique can be found in its
decentralized nature and stability in case of failure as it can
cope with failures within overlapping loops. Therefore, TBFT
is also expected to demonstrate a substantial stability and fast
recovery when multiple link failures occur at the same time.

In this paper, we propose a Tie-set Based Fault Tolerance
(TBFT) algorithm for double-link failures, which is a novel
approach against the scheme using Dijkstra as in RSTP. The
remainder of the paper is organized as follows. Section II-A
discusses tie-set graph theory for the benefit of the reader.
Section III presents the improved algorithm for configuring
the network with tie-set information. Section IV contains
the algorithm we developed for recovering from double-link
failures. In section V, we present our simulation results and
compare them with those of RSTP. In the final section, we
conclude the paper and discuss future works.

II. TIE-SETS AND STATE INFORMATION

In this section, we provide a brief review of tie-set graph
theory and state information of a node.

A. Introduction to Tie-set Graph Theory

For a given bi-connected and undirected graph G = (V,E)
with a set of vertices V = {v1, v2, ..., vn} and a set of edges
E = {e1, e2, ..., em}, let Li = {ei1, ei2, ...} be a set of all the
edges that constitutes a loop in G. The set of edges Li is called
a tie-set [21]. Let T and T respectively be a spanning tree and

(a) In a planar graph (b) In a non-planar graph

Fig. 1. Examples of a fundamental system of tie-sets

a cotree of G, where T = E−T . For l ∈ T , T ∪{l} includes
one tie-set. Focusing on a subgraph GT = (V, T) of G and an
edge l = (a, b) ∈ T , there exists only one elementary path PT

whose origin is b and terminal is a in GT . Then, a fundamental
circuit that consists of the path PT and the edge l is uniquely
determined as C(l) = (a, l = (a, b), PT (b, a)). The tie-set
L(l) corresponding to C(l) is referred to as a fundamental
tie-set. It is known that µ = |T | fundamental tie-sets exist in
G, and they are called a fundamental system of tie-sets LB =
{L1, L2, ...Lµ}. A fundamental system of tie-sets guarantees
that it covers all the vertices and edges even in a bi-connected
and non-planar graph G as shown in Fig. 1.

B. State Information of a Node

Each node vi mainly has three types of information as state
information as follows:

1) Incident Links E(vi): Link information connected to vi.
2) Adjacent Nodes V (vi): Node information connected

through incident links of vi.
3) Tie-set Information L(vi): Information of fundamental

tie-sets to which vi belongs. When a fundamental tie-set Li

contains ei that includes vi in its two vertices, it is defined
that vi belongs to Li and has information of Li.

III. DISTRIBUTED ALGORITHM FOR TIE-SET
INFORMATION CONFIGURATION (DATIC)

As described in II-B, each node has information of funda-
mental tie-sets to which the node belongs so as to solve any
problems within some loops. Although a distributed algorithm
for recognizing Tie-set Information was proposed in [18], we
propose a more efficient Distributed Algorithm for Tie-set
Information Configuration (DATIC).

A. Mechanism of DATIC

Communication paths are represented by a set of links of a
spanning tree T , which we call “tree links”. On the other hand,
other links are considered as a set of links of a cotree T , which
we call “cotree links”. We can create a tree by exploiting a
spanning tree algorithm (STA) [22].

As in Fig.1, thick edges stand for tree links, whereas thin
edges stand for cotree links.

We define a Find Tie-set Message (FTM) to obtain the
information of a fundamental tie-set (Tie-set Information in
state information of a node). FTM contains the following
information:

• EdgeTable: A set of links through which a FTM passed
• NodeTable: A set of nodes through which a FTM passed
To obtain Tie-set Information L(vi), each node vi conducts

DATIC using FTMs described as follows.
Initialization: Each node vi checks its incident links E(vi).

For any cotree link l = (vi, vj) ∈ E(vi), vi negotiates with vj
to decide which node conducts DATIC for Tie-set Information
of L(l) based on Node Priority such as Physical Address of a
node.

Let vo be a node that executes DATIC to construct Tie-set
Information of L(l) where l ∈ T . vo creates a FTM, and then
sends the FTM to the node vj , where vj is included in a set
of two vertices of a cotree link l = (vo, vj). When sending a
FTM to vj , vo adds node information of vo to NodeTable and
link information e(vo, vj) to EdgeTable.

From here, let vr be a node that receives a FTM. After
receiving a FTM, vr executes different procedure by the
following cases.

Case 1: vr ̸= vo If vr (̸= vj) is a leaf1, vr discards the
FTM. If vr is not a leaf or vj , vr copies the FTM and sends the
copied FTM to adjacent nodes that are connected through tree
links of E(vr). When sending a copied FTM to an adjacent
node va that is connected through a tree link, vr adds node
information of vr to NodeTable, and adds link information
e(vr, va) to EdgeTable.

Case 2: vr = vo In this case, the FTM has passed through
a fundamental tie-set L(l) in a network. The information of
EdgeTable and NodeTable included in the FTM is stored in vo.
vo also notifies the Tie-set Information of L(l) to the nodes
that are included in NodeTable of the received FTM by just
passing the FTM around on a tie-set L(l).

If failure occurs in the middle of DATIC, the node that
detects the failure broadcasts failure notification messages,
which correspond to Bridge Protocol Data Units (BPDUs) in
Spanning Tree Protocol, in order to notify the root node of
it. Then, the root creates a spanning tree again followed by
DATIC above.

B. Complexity Analysis of DATIC
Here, we discuss the Communication Complexity and Time

Complexity of DATIC from the perspective of a distributed
algorithm [22].

1) Time Complexity of DATIC: Analyzing the Time Com-
plexity of DATIC is simple as a FTM is passed through one
cotree link and several tree links until a FTM is stored in
an original node that sent the FTM or discarded at a leaf
node. Therefore the maximum number of times a FTM will
be forwarded is equal to D, the diameter of the graph, and
therefore the Time Complexity of DATIC is O(D) as FTMs
are sent simultaneously.

1A leaf x exactly has one tree link in its incident links and other incident
links are cotree links.

2) Communication Complexity of DATIC: The Communi-
cation Complexity is the total number of messages produced
by the entire distributed system to configure Tie-set Informa-
tion. Only one node a or b of each l = (a, b) ∈ T sends a
FTM on l, and there are µ such links in the graph, where µ is
the nullity of the graph, as described in Section II-A. Because
the FTM is copied and sent along only tree links, it will be
copied at most |V |−1 times. Therefore, DATIC completes its
procedures with Communication Complexity of O(µ|V |).

IV. TIE-SET BASED FAULT TOLERANCE (TBFT) FOR
DOUBLE-LINK FAILURES

In this section, we analyze the theoretical aspect of double-
link failures on the basis of tie-set graph theory and propose
an algorithm to cope with double-link failures.

A. Problem Formulation for Double-Link Failures with TBFT
A double-link failure is defined as two physical or logical

links failing at the same time, or at least close enough in
time that the system cannot tell the difference. Let efi and
efj be two failed links where failures happen on ei and ej
(ei ̸= ej), respectively. A set of two failed links is denoted
as Ef = {efi , e

f
j }. Let L(efi), L(e

f
j) respectively denote the

classes of tie-sets that contain failed links efi , efj .
Here, we further denote Lf , L(efi , e

f
j), and L(efi , e

f
j) as

follows:

Lf = L(efi) ∪ L(efj) (1)

L(efi , e
f
j) = L(efi) ∩ L(efj) (2)

L(efi , e
f
j) = L(efi)⊕ L(efj) (3)

Lf is the class of all the tie-sets that include link failure(s).
L(efi , e

f
j) is the class of tie-sets that include both of the two

failed links. L(efi , e
f
j) represents the class of tie-sets that share

exactly one failed link with tie-sets that have two failed links.
By these definitions, the following equation holds true.

Lf = L(efi , e
f
j) ∪ L(efi , e

f
j) (4)

Double-link failures with TBFT are classified into two
major cases depending on the locations of the two failed links.

1) Double-Link Failures are Independent L(efi , e
f
j) = ∅:

When double-link failures happen on two failed links Ef

where L(efi , e
f
j) = ∅, it is defined that double-link failures

are independent in TBFT. In this case, double-link failures
can be considered as a pair of single-link failures that can be
solved with the method for single-link failure. According to
TBFT, one tie-set Lf

i ∈ L(efi) with the failed link efi handles
the failure by replacing the failed link efi with the co-tree link
in the tie-set Lf

i . Similarly, tie-set Lf
j ∈ L(efj) recovers the

failure on the link efj by replacing efj with the cotree link in
Lf
j . Fig.2 demonstrates an example of the behavior of TBFT in

this case. The double-link failures are handled independently
in different tie-set Lf

i and Lf
j in an autonomous manner.

Fig. 2. The case where double-link failures are independent: L(efi , e
f
j) = ∅

(a) L(efi , e
f
j) = ∅

(b) |L(efi , e
f
j)| = 1

(c) |L(efi , e
f
j)| = 2

Fig. 3. The case where double-link failures are dependent: L(efi , e
f
j) ̸= ∅

2) Double-Link Failures are Dependent L(efi , e
f
j) ̸= ∅:

When double-link failures happen on two failed links Ef

where L(efi , e
f
j) ̸= ∅, it is defined that double-link failures

are dependent in TBFT. In this case, there is at least one tie-
set that contains both of the two failed links Ef . There are
two sub-classes focusing on L(efi , e

f
j).

• L(efi , e
f
j) = ∅

In this case, double-link failures cannot be restored. As
Lf = L(efi , e

f
j), all the failed tie-sets Lf contain both

of the two failed links. The whole system is divided into
two network partitions, where there is no way to recover
this type of double-link failures as messages cannot be
redirected between separated network partitions.

• L(efi , e
f
j) ̸= ∅

(a) Case 1 (b) Case 2-1

(c) Case 2-2

Fig. 4. Examples of Failure Information Sharing within a Tie-set

In this case, double-link failures can be restored. As at
least one tie-set that shares only one failed link among
failed tie-sets Lf is available so systems can choose a
tie-set Lr ∈ L(efi , e

f
j) to recover one of the double-link

failures and then restore another failure subsequently.
An example of double-link failures where L(efi , e

f
j) = ∅

is described in Fig. 3(a). As seen in Fig. 3(a), the system is
divided into two partitions i and j. Naturally, no technique
can possibly cope with this type of failure.

Examples of double-link failures where L(efi , e
f
j) ̸= ∅ are

described in Fig. 3(b) and 3(c). In Fig. 3(b) where L(efi , e
f
j) ̸=

∅, |L(efi , e
f
j)| = 1, there is a tie-set L(e1,e3) in which two failed

links conflict to use the cotree link of the tie-set. The tie-set
with only one failed link Le3 must recover its failed link first.
This resolves the conflict of failed links in the tie-set with
two failed links. In Fig. 3(b), L(e1) = {L(e1,e3)}, L(e3) =
{L(e1,e3), Le3}, and L(e1, e3) = {Le3}. In this example, the
tie-set Le3 should be responsible for the recovery of the failed
link e3. L(e1,e3) should be responsible for the recovery of e1.

In Fig. 3(c) where L(efi , e
f
j) ̸= ∅, |L(efi , e

f
j)| = 2, there are

two tie-sets that share exactly one failed link with a tie-set that
has two failed links. One of the tie-sets with only one failed
link is responsible for the recovery of its failed link. In the Fig.
3(c), as L(e3) = {Le3 , L(e3,e6)}, L(e6) = {L(e3,e6), Le6}, and
L(e3, e6) = {Le3 , Le6}, tie-sets Le3 and Le6 recover the failed
links e3 and e6 separately.

B. Failure Information Sharing within a Tie-set

In order to implement this algorithm, there must be a
communication mechanism that allows nodes within a failed
tie-set Lf

i that includes failed link(s) to share information
about the failure. Therefore, we design a procedure to share the
double-link failure information within a failed tie-set Lf

i . Let
a Failure Information Sharing Message (FISM) be a message

that includes failure information that a node detected. A FISM
includes the information about the failed link ef ∈ Ef , tie-
sets to which the failed link belongs L(ef), and an address
table of Lf

i ∈ L(ef).
This procedure should consider the following points.
• A node with a failed link ef sends FISMs to its neighbors

within each Lf
i ∈ L(ef).

• The neighbor(s) that receive a FISM store the information
about the failure and transfer the FISM further within
the tie-set Lf

i . If a node receives another FISM about a
second failure, it just adds the new information to the
already stored information and also sends FISMs to its
neighbors within each Lf

i ∈ L(ef).
After this procedure, all the connected nodes in Lf

i obtain
information about failed links.

Fig. 4(a) shows that v1 already knows both failed links
on e1 and e2 by failure the detection mechanism described
later in the next section. v2 knows there is a link failure on
e2; then, v2 passes a FISM (“e2 failed”) to its neighbor v3.
Similarly, v3 passes a FISM (“e1 failed”) to v2. Both of them
receive and store the FISMs. In Fig. 4(b), only v1 and v2 have
the information of double-link failures. Then, v2 shares the
information to v3 and v4 as shown in Fig. 4(c).

C. Failure Detection Details

Here, let us describe the algorithm in more detail. In order to
recognize link status, each node vi sends a SYN message to an
adjacent node va in a certain direction and receives an ACK
response from an adjacent node va ∈ V (vi). The direction
may be decided by the sorted address table stored in Tie-set
Information of Vi, such as NodeTable. This message passing
should be done periodically within some time period tsyn to
check if the link to the adjacent node va is alive. After vi sends
a SYN message to va, vi expects to receive an ACK response
back from va during a time period tack. This procedure enables
failure detection on a link connected to va.

The length of the time period tsyn and tack depends on the
topology and physical characteristics of a distributed system.
Defining the time period tsyn and tack is to be an issue that
should be carefully considered when designing a switch.

In the failure detection procedure, after vi sends a SYN
message to va, two cases are possible as follows:

1) When vi receives a response from va during time period
tack: In this case, the link between vi and va is undamaged,
since an ACK message comes back to vi from va.

2) When vi does not receive a response from va during time
period tack: In this case, the time period tack has passed and
vi does not receive an ACK response from va. The node vi
concludes that the link to va has failed. The same conclusion
is made by node va if it does not receive a SYN message from
node vi either. After that, both vi and va start sending FISMs
to available neighbors within the tie-sets L(e(vi, va)). Let vf
be a node that detects the failed link ef ∈ Ef . If several tie-
sets that include ef exist for vf , they are informed about the
failure as well. When a node receives a FISM, it waits a time

period tf to receive another FISM about the any other failures.
On this step, two cases are possible as follows:

• Case 1: A node does not receive a FISM about another
failure during time period tf . In this case, no additional
failure happens or failures happen in different tie-sets. In
case of double-link failures, this case corresponds to the
case where L(efi , e

f
j) = ∅.

• Case 2: A node receives a FISM about another failure
during time period tf . This case indicates that both
failures happen in the same tie-set. This case corresponds
to the case where L(efi , e

f
j) ̸= ∅. A node updates stored

information about those failed links.
After time period tf , all nodes in tie-sets Lf have the

information about failures. In the case of simultaneous double-
link failures, a tie-set is divided into two isolated parts. Both
failed links have two connected nodes that are aware of failure.
This means that each part of the tie-set has nodes that inform
about both failures. The next step is to decide which tie-set
recovers which failure.

In order to assign responsibilities to recover link failure(s)
among all tie-sets with failure(s) Lf , each node analyzes the
failure information and makes a decision on its own. After a
time period tf , a node vi has all information about failures.
Therefore, a node vi is able to analyze all tie-sets that have
at least one failed link and designate a tie-set for recovery of
each of the failures. Tie-sets that have only one failed link are
designated to recover it. Tie-sets with double-link failures are
designated to recover links that are not overlapped with other
tie-sets.

The node vi takes responsibility to recover a failed link
ef ∈ Ef only if both of the following conditions hold true:

1) Node vi is connected to the cotree link of Lf
i that

contains ef .
2) Lf

i is designated for recovery of ef .
If a failed link ef has more than one designated tie-set, a

node vi will take responsibility for recovery if it is in the tie-set
with the smallest number of nodes. If ties happen, any of the
tie-sets can be chosen to recover through some deterministic
method of prioritization, such as the lowest numbered MAC
address among all nodes. Hence, each tie-set recovers a failure
independently from other tie-sets, which means there is no
need to notify about the decision made to recover a particular
failure as well as about the completion of the recovery.

D. Detection and Recovery Algorithms
Let vf be a node that detects a link failure and ef be a

failed link. Distributed algorithm for link failure consists of
two parts: the algorithm for a node vf that detects a failure
on link ef (Algorithm 1) and the algorithm that is executed
by a node vi that received a FISM (Algorithm 2).

We could come up with several ideas to pick a tie-set up
where route switching is executed in Step 2 in Algorithm 2;
the total value of link weights of a tie-set, the number of hops
to a cotree link, the size of a tie-set, among others depending
on the nature of a network. The number of hops to a cotree
link is considered in this paper.

Algorithm 1 Distributed algorithm in a failed node vf

STEP 1: Blocking physical ports connected to ef
vf blocks its physical port connected to ef .

STEP 2: Selecting failed tie-sets L(ef)
vf selects tie-sets L(ef) = {Lf

i } from Tie-set Information
L(vf) where ef ∈ Lf

i , and includes information of failed
tie-sets L(ef) in a FISM.

STEP 3: Sharing information about the failed link ef
vf sends a FISM with information about the failed link ef
and failed tie-sets L(ef) to adjacent nodes in each tie-set
Lf
i ∈ L(ef).

Algorithm 2 Distributed algorithm in a node vi that received
a FISM
STEP 1: Receiving a FISM

if vi receives a FISM from va then
Store the failure information about ef and L(ef).
Send a copied FISM to the next node ̸= va in the tie-set
Lf
i .

Wait a time period tf in order to receive a FSIM about
another failure.

end if
STEP 2: Analyzing failure information to make decision

Using failure information after a time period tf , do the
following:
if Lf

i includes only ef then
Designate Lf

i to recover ef .
else {Lf

i includes double link failures Ef}
if ef ∈ Ef belongs only to Lf

i then
Designate Lf

i to recover ef .
end if

end if
After designating responsibility to Lf

i , do the following:
if Lf

i is designated to recover ef and vi is connected to
cotree link of Lf

i then
Take responsibility to recover ef .

end if
STEP 3: Opening physical ports connected to cotree link

if vi takes responsibility to recover ef then
Open port to cotree link.

end if

V. SIMULATION AND EXPERIMENTS

We created a simulation with Java to verify the behavior of
the recovery method for link failure suggested in this paper and
compared TBFT with RSTP on behalf of existing technologies
because of its general use. A tool which demonstrates RSTP
is created in reference to IEEE standards 802.1D [2]. In con-
figuring a network, links are set to be undirected so that data
can flow bi-directionally. In addition, the network is designed
to be redundant, in other words, bi-connected, so as to be
and able to cope with failures. For node configurations, each
node was assigned input ports and output ports, a message

Fig. 5. The average number of times of route switching

Fig. 6. The maximum number of times of route switching

buffer, and a processor. A common buffering method is used
in a simulated node, where all messages received through
input ports go to the message buffer. The processor takes each
message from the message buffer via a polling method. After
each message is processed, the message is sent to other nodes
through appropriate output ports unless it is discarded or this
node is its final destination.

A. Route Switching Points

One of the serious problems in RSTP is that topology
of tree greatly changes when failure happens in the vicinity
of a root bridge requiring many times of route switchings.
Naturally, many times of route switchings lead to instability
in communications.

On the basis of these points, experiments to measure the
number of times of route switchings required to restore
double-link failures are conducted to compare against RSTP.
A spanning tree that represents communication paths before
double-link failures is denoted as To, and a renewed tree that
represents communication paths after link failures is denoted
as Tn. The number of route switching points can be quantified
using the distance between To and Tn. The distance is defined
as follows:

d(To, Tn) = |To − Tn| (5)

Let d(i,j)(To, Tn) be the distance when link failures occur on
tree links {ei, ej} ⊆ T, (ei ̸= ej). In total, ρC2 of double-
link failures can be conceivable where ρ(= |T |) is a rank of
a graph. Let dr(i,j)(To, Tn) be the distance when double-link
failures can be restored; the set of failed edges Ef does not
correspond to the case where L(efi , e

f
j) ̸= ∅ and L(efi , e

f
j) =

∅.
If R combinations of restored points exist, then the average

of the number of route switching points Ad is defined as
follows:

Ad =

∑
dr(i,j)(To, Tn)

R
(6)

For a given bi-connected and undirected graph G = (V,E), a
graph G is created at random with the number of nodes |V |
ranging from 20 to 100. A tree is output by giving link costs at
random, and executing the Spanning Tree Algorithm (STA).
Fig.5 is the experimental results that show the average Ad

of the number of route switching points. As shown in Fig.5,
RSTP requires about more switchings than TBFT on average
when double-link failures happen, while TBFT needs only
two time switchings. In addition, Ad shows modest upward
tendency in proportion to the size of a network.

Fig.6 shows the maximum times of route switchings
(max{dri (To, Tn)}) for each given graph whose condition is
the same as the experiment to measure Ad. While TBFT
constantly needs two switchings, RSTP requires much more
switchings than the proposed method. This is because RSTP
greatly changes its tree topology in case of failure in the
vicinity of a root bridge. Failure near a root node is the biggest
problem in operation of RSTP. The remarkable tendency of
augmentation of the number of times of route switching is
seen in a large-scale network. In that case, throughput degrades
seriously as well as convergence time greatly increases making
an entire network unstable.

B. Communications Overhead

Under the same conditions, we measured the communica-
tions overhead, which is the number of total messages that
are used in restoring double-link failures. Communications
overhead directly affects the stability of a network as indi-
vidual messages may change the physical communications
port states, which temporally interrupts data transfer between
bridges. Furthermore, transmitting these messages decreases
the amount of bandwidth available to any applications running
on the distributed system. As these applications may be
mission-critical, which is a reasonable assumption given that
we are concerned with rapid fault recovery, they should be
disrupted as little as possible even by rare events such as link
failures.

Let Nm(ei, ej) be the total number of messages used in
restoring double-link failures when link failures occur on tree
links {ei, ej} ⊆ T, (ei ̸= ej). The message used in RSTP
when recovering failures is called Bridge Protocol Data Unit
(BPDU), whereas TBFT uses FISMs to recover failure. Let
Nr

m(ei, ej) be the total number of messages when double-link

Fig. 7. The average communications overhead

Fig. 8. The maximum communications overhead

failures can be restored. Then, the average number of total
messages Am is expressed as follows:

Am =

∑
Nr

m(ei, ej)

R
(7)

Fig.7 and 8 show the average number of total messages
Am and the maximum number of total messages Nr

m(ei, ej).
As shown in Fig.7 and 8, TBFT greatly reduces the total
number of messages to restore double-link failures over RSTP.
Therefore, the recovery mechanism will have less visible
impact on the performance of the system than RSTP.

VI. CONCLUSION

In this paper, Tie-set Based Fault Tolerance (TBFT) is
proposed for distributed autonomous restoration of double-link
failures. We provided detailed descriptions of the algorithms
required for configuring a network with tie-set information and
for detecting and recovering from failures. We demonstrated
that TBFT can realize faster recovery and more efficient oper-
ation than tree-based restoration schemes through simulation
experiments and comparisons with the Rapid Spanning Tree
Protocol (RSTP).

We are currently investigating whether this technique can be
extended to an arbitrary number of link failures. This result, if

found to be true, will be presented in future work. Another im-
portant question that we are exploring is the relation between
how the initial spanning tree is chosen and the structure of the
resulting tie-sets chosen by DATIC. We will continue to work
towards optimizing these algorithms for eventual deployment
in an emulated distributed system environment.

REFERENCES

[1] Perlman, Radia (1985). An Algorithm for Distributed Computation of
a Spanning Tree in an Extended LAN ACM SIGCOMM Computer
Communication Review 15 (4): 44E53.

[2] IEEE Computer Society Sponsored by the LAN/MAN Standards Commit-
tee, IEEE Standards 802.1D, IEEE Standard for Local and Metropolitan
Area Networks: Media Access Control (MAC) Bridges, 9 June 2004.

[3] J. Qiu, Y. Liu, G. Mohan, K.C. Chua, Fast Spanning Tree Reconnection
for Resilient Metro Ethernet Networks, IEEE International Conference
on Communications (ICC), 2009, pp. 1 - 5.

[4] J. Qiu, G. Mohan, K.C. Chua, Y. Liu, Handling Double-Link Failures
in Metro Ethernet Networks Using Fast Spanning Tree Reconnection,
Proceedings of the 28th IEEE conference on Global telecommunications
(GLOBECOM), 2009, pp. 3593-3598.

[5] M. Pustylnik, M. Vukotic, R. Moore, RuggedCom, Inc., Performance of
the Rapid Spanning Tree Protocol in Ring Network Topology Available
online.

[6] D. DesRuisseaux, Use of RSTP to Cost Effectively Address Ring Recovery
Applications in Industrial Ethernet Networks, Presented at the ODVA
2009 Conference and 13th Annual Meeting, February 25, 2009, Howey-
in-the-Hills, Florida USA.

[7] http://www.sonet.com/EDU/upsr.htm, Understanding SONET UPSRs,
Available online.

[8] http://www.sonet.com/EDU/blsr.htm, Understanding SONET BLSRs,
Available online.

[9] Wasem OJ., An algorithm for designing rings for survivable fiber net-
works, IEEE Transactions on Reliability 1991; 40:428-439.

[10] L. M. Gardner, M. Heydari, J. Shah, I. H. Sudborough, I. G. Tolis, and
C. Xia, Techniques for finding ring covers in survivable networks, in
Proc. IEEE GLOBECOM, San Francisco, CA, Nov. 1994, pp.1862-1866.

[11] C. Thomassen, On the complexity of finding a minimum cycle cover of
a graph, SIAM Journal on Computing 1997; 26(3):675-677.

[12] G.Shen, and W.D.Grover, Extending the p-Cycle Concept to Path Seg-
ment Protection for Span and Node Failure Recovery IEEE Journal on
Selected Areas in Communication, Vol. 21, No. 8, 2003.

[13] D. A. Schupke, W. D. Grover, and M. Clouqueur, Strategies for
Enhanced Dual Failure Restorability with Static or Reconfigurable p-
Cycle Networks IEEE International Conference on Communications
(ICC 2004), June 2004.

[14] T. Fenga, L. Longb, A.E. Kamalb, and L. Ruana, Two-link failure
protection in WDM mesh networks with p-cycles Computer Networks
Volume 54, Issue 17, 3 December 2010, pp. 3068 - 3080.

[15] Hongsik Choi, Subramaniam, S., Hyeong-Ah Choi., On double-link fail-
ure recovery in WDM optical networks, IEEE International Conference
on Computer and Communications (INFOCOM), 2002, Vol. 2.

[16] N. Shinomiya, T. Koide, and H. Watanabe, A theory of tie-set graph
and its application to information network management, International
Journal of Circuit Theory and Applications 2001; 29:367-379.

[17] T. Koide, H. Kubo, and H. Watanabe, A study on the tie-set graph theory
and network flow optimization problems, International Journal of Circuit
Theory and Applications 2004; 32:447-470.

[18] K. Nakayama, N. Shinomiya, An autonomous recovery for link failure
based on tie-sets in information networks, Proc. of IEEE Symposium on
Computers and Communications (ISCC), 2011, pp. 671-676.

[19] K.Nakayama, N.Shinomiya, H.Watanabe, Distributed Control for Link
Failure Based on Tie-Sets in Information Networks, Proceedings of 2010
IEEE International Symposium on Circuits and Systems; pp.3913-3916.

[20] Swamy MNS, Thulasiraman K., Graphs, Networks, and Algorithms,
Wiley Interscience: New York, 1981.

[21] Iri M, Shirakawa I, Kajitani Y, Shinoda S etc., Graph Theory with
Exercises, CORONA Pub: Japan, 1983.

[22] Nancy A. Lynch, Distributed Algorithms, Morgan Kaaufmann Pub-
lishers, Inc.: San Francisco, California, 1996.

