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Abstract—This paper proposes a distributed flow-based rout-
ing technique in energy-harvesting wireless sensor networks
(EHWSNs) in order to balance the energy consumptions by
sending packets assigned to routers that are sent from sensors to
base stations. The objective of the flow optimization problem is to
minimize the total load factors of all the nodes and wireless links,
which leads to sustainable management of the sensor networks
that exploit renewable power from energy harvesting systems.
We propose a novel algorithm based on tie-set graph theory
where the underlying graph of an EHWSN is divided into a
set of independent loops to significantly reduce the topological
complexity, which simplifies the flow optimization problem to be
solved in a distributed manner. Simulation experiments against
the shortest-path and multi-path algorithms demonstrate that
optimized packet flows by the proposed method realize the
sustainable EHWSNs and maintain the useful life of storage
devices with modest increase in total energy consumption by
routings.

I. INTRODUCTION

Development of sustainable routing in energy harvesting
wireless sensor networks (EHWSNs) has been considered
as an important issue in realizing a reliable wireless sensor
networks that harvest power from the environment [1], [2].
In [3], [4], [5] the optimal routing problem for EHWSNs
has been studied in terms of maximizing the workload that
can be sustained by the network. [3] maximizes data rate for
uniform monitoring using a flow algorithm. [4] maximizes
the lexicographic of nodes’ data rate. [5] solves maximal
utility functions of data rate for tree topology networks. Given
such EHWSNs with fixed data rate (e.g., maximum data rate
in these works), we tackle the problem of guaranteeing and
improving routing sustainability on the basis of tie-set graph
theory.

The shortest-path distributed computing method as in [6]
can also be applied to EHWSNs as it can compute the
minimum energy-cost paths that minimize the total energy
consumption by routings. However, utilization of shortest-
path distributed algorithm may cause traffic congestion on the
particular minimum-energy paths. Given that multiple routes
to send traffic helps nodes to utilize resources more equitably,
a distributed multi-path algorithm based on forwarding packets
on different routes provides an easy way to use multiple paths
without adding much complexity to a node [7]. Although a
lot of efforts have been made in developing distributed multi-
path algorithms, the decentralized nature of networked systems
has made it difficult to drastically solve the flow-balancing
problems.

The objective of flow optimization in this paper is to
realize the sustainable EHWSNs by radically balancing the
load factors in the network so that each node can maintain a
reliable battery life without running out of energy. Therefore,
we formulate the flow problem to minimize the maximum
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Fig. 1. Graph representation of an EHWSN and a routing example based
on tie-sets.

value of node-constrained load factor, which is the usage rate
of the available energy at a node by outgoing packet flows.

An effective routing algorithm can be realized by exploiting
tie-set graph theory that breaks a network into a set of loops
and autonomously creating optimal routes using those loops.
For instance, an EHWSN is abstracted into a graph represen-
tation by substituting sensors, servers, and base stations for
nodes, and wireless connections for links of a graph as shown
in Fig. 1. Then, the sustainable routing problem can be studied
as a flow optimization problem that minimizes the total load
balancing factor of all the nodes using the graph model. On
the basis of the tie-set structure, optimum flows are calculated
as in Fig. 1, which are directly applied to packet routings by
the sensor devices.

The effectiveness of the autonomous distributed algorithm
based on Tie-sets has been verified in various fields such as
real-time optimal power flow control in smart power grid [8],
traffic congestion improvement in information networks [9],
and failure recovery by tie-set based fault tolerance (TBFT)
technique [10]. On the basis of tie-sets, we propose a de-
centralized algorithm to calculate optimal flows in EHWSNs,
which is iterated to realize the global optimization.

In the simulation section, we compare the load factors and
energy consumptions optimized by the proposed method with
those of using the shortest-path and multi-path algorithms.
Then, the simulated behavior of energy battery level of the
node that consumes the most energy by routings is shown at
each time step to demonstrate reliable use of storage devices
by balancing the workload of the nodes in the network.

II. PROBLEM FORMULATION

In this section, we formulate a Flow Optimization problem
in an Energy-Harvesting Wireless Sensor Network (EHWSN).



TABLE I
DEFINITIONS FOR INPUTS, VARIABLES, AND OUTPUT

Inputs
gi(t) Harvested Power, the power harvested at node vi at

time t.
pk Packet Energy, the energy spent by the source node to

process and send a packet across ek.
Variables
ai(t) Available Energy stored at node vi at time t bounded

by the size of its storage device.
τk(t) Recovery Time required by a node’s energy scavenger

to replenish the energy to send a packet, defined as
τk(t) =

pk
ai(t)

.
ck(t) Channel Capacity, the maximum packet rate across an

edge ek at time t.
Output
fk(t) Edge Flow, a packet rate across an edge ek imposed by

the routing algorithm.

A. Input Model and Variables
We consider a directed connected graph G = (V,E) with

a set of nodes V = (vi, i = 1, ..., n) representing sensors,
routers, and one or more base stations and a set of edges
E = {ek} ⊆ V × V representing wireless connectivity. A set
of source nodes S and a set of sink nodes T are also given.
Each link is directed with an arbitrarily defined direction, and
a link from node vi to vj is denoted interchangeably by either
e(i, j) ∈ E or i→ j.

Table I defines the inputs, output, and other variables used
in this paper. The energy stored at node vi at time t follows
the dynamics as

ai(t) = ai(t− 1) + gi(t), 0 ≤ ai(t) ≤ ai. (1)

The channel capacity ck(t) of an edge ek is the reverse of its
recovery time defined as

ck(t) =
1

τk(t)
=
ai(t)

pk
. (2)

B. Conditions
1) Channel Capacity Condition: An edge flow f(i, j, t) is

passing data quantity over a link e(i, j) from vertex vi to vj
at time t. When a flow f(i, j, t) passes along the direction
of an edge e(i, j) then f(i, j, t) ≥ 0 representing the flow
going out from the node vi; otherwise f(i, j, t) ≤ 0 that is the
flow coming from the node vj . Therefore, the channel capacity
ck(t) is

ck(t) =

{
ai(t)
pk

, if fk(i, j, t) ≥ 0,
aj(t)
pk

, if fk(i, j, t) < 0.
(3)

Then, the boundary condition of an edge flow fk(i, j, t) is

−aj(t)
pk

≤ fk(i, j, t) ≤
ai(t)

pk
, for ek ∈ E. (4)

2) Flow Conservation Law: Let j : i → j and h : h → i
denote the set of successors and predecessors of node vi in
the directed graph, respectively. For each node vi, a net flow
export at time t is defined as

Fi(t) =
∑
j:i→j

fk(i, j, t)−
∑

h:h→i

fk(h, i, t). (5)

On the basis of the flow conservation law, the following holds
true at node vi at time t:

Fi(t)


> 0, vi ∈ S
< 0, vi ∈ T
= 0, otherwise.

(6)

where
∑

vi∈V Fi(t) = 0.
3) Power Budget: For outgoing edge flows from node vi

that satisfy

fk(i, j, t) ≥ 0 or fk(h, i, t) < 0,

an overall power budget pFi(t) of node vi is defined as
follows:

pFi(t) =
∑
j:i→j

(pkfk(i, j, t))−
∑

h:h→i

(pkfk(h, i, t)). (7)

The power budget at a node is always pFi(t) ≥ 0. Then, the
available energy ai(t) at t is updated to a′i(t) using the power
budget pFi(t) as

a′i(t) = ai(t)− pFi(t). (8)

Since the available energy needs to sustain a′i(t) ≥ 0, the
power budget pFi(t) must satisfy the following condition:

pFi(t) ≤ ai(t− 1) + gi(t). (9)

The equations (1), (8), and (9) suggest that the power
budgets should be balanced; otherwise, particular node(s) run
out of power quickly, which leads to unsustainable EHWSNs.

C. Objective Function

Here, we define the objective function to balance the work-
load on nodes (power budgets) in order to maintain sustainable
battery life at each sensor device. As the balancing problem of
power budgets is intrinsically the same problem as balancing
edge flows, we formulate edge-load factors whose summation
is to be minimized at all times.

1) Node-Constrained Flow Model: In order to realize the
assignment of energetically sustainable workload (power bud-
get) to each node, we want to consider the node-constrained
load factor at node vi below:

wi(pFi(t), t) :=
pFi(t)

ai(t)
. (10)

We define an overall node-constrained network load factor
Wv(pFi(t), t) as

Wv(pFi(t), t) :=
∑
vi∈V

wi(pFi(t), t). (11)

Next, we convert this node-constrained flow model into an
edge-constrained flow model by focusing on the overall net-
work load factor.

2) Edge-Constrained Flow Model: An edge-constrained
load factor wk(fk(t)) for each edge ek ∈ E and an overall
edge-constrained network load factor We(fk(t), t) with regard
to fk(t) are defined as follows:

wk(fk(t), t) :=
|fk(t)|
ck(t)

, (12)

We(fk(t), t) :=
∑
ek∈E

wk(fk(t), t), (13)



Then, we have the following theorem.
Theorem: The node-constrained network load factor is the

same as the edge-constrained network load factor as in

Wv(pFi(t), t) =We(fk(t), t) (14)

The proof can be found in Appendix A. Therefore, we want
to balance the edge-constrained load factors.

Now,we define a convex edge-load function ψk(fk(t), t) as

ψk(fk(t), t) := w2γ
k (fk(t), t). (15)

with some positive integer γ > 0. In this paper, we simplify
the convex function by deciding the value as γ = 1.

For each edge ek ∈ E, an edge-energy function π(fk(t), t)
represents the energy consumption by the edge flow on ek at
time t is defined as

π(fk(t), t) := pk|fk(t)|. (16)

According to (15), since the edge-load function contains the
edge-energy function as in

ψk(fk(t), t) =


(

π(fk(t),t)
ai(t)

)2γ

, if fk(i, j, t) ≥ 0,(
π(fk(t),t)

aj(t)

)2γ

, if fk(i, j, t) ≤ 0.
(17)

minimizing the sum of edge-load functions also leads to
balancing the energy consumption by the edge flows.

In summary, we define a Flow Optimization Problem in an
EHWSN (FOP-EHWSN) as follows:

FOP-EHWSN: Given the initial net flow export Fi(1), the
initial available energy ai(0), and the randomized harvested
power gi(t) at time t for each node vi ∈ V , the packet energy
pk for each edge ek ∈ E, and a given time sequence Γ = {t},
the FOP-EHWSN is

min
∑
t∈Γ

∑
ek∈E

ψk(fk(t), t), (18)

over f, F, pF,

s. t. (1) − (9).

III. FLOW OPTIMIZATION BASED ON TIE-SET GRAPH

Tie-set graph theory divides a network into a set of loops
in which optimization is conducted in a distributed manner.
In each loop, sustainable routes of workload are constantly
calculated. Iterative calculation of sustainable routes in indi-
vidual loops also leads to global sustainability on the basis of
the notion of tie-sets described as follows.

A. Tie-Set Graph Theory
As the tie-set graph theory is described in [11], [12] in

detail, we provide the basis for the unfamiliar reader.
For a given connected graph G = (V,E), let Lλ =

{eλ1 , eλ2 , ...} be a set of all the edges that constitutes a loop in
G called a tie-set [13]. Let T and T respectively be a spanning
tree and a cotree of G, where T = E − T . µ = µ(G) = |T |
is called the nullity of a graph. Focusing on a subgraph
GT = (V, T ) of G and an edge lλ = eλ(a, b) ∈ T , there
exists only one elementary path PT (b, a) ⊆ T whose origin
is b and terminal is a in GT . Then, a fundamental tie-set that
consists of the path PT and the edge lλ is uniquely determined
as Lλ(lλ) = {lλ}∪PT (b, a). We often refer to a fundamental
tie-set as a tie-set. There are µ fundamental tie-sets in G
and they are called a fundamental system of tie-sets denoted
as LB = {L1, L2, ...Lµ}. If a graph G is bi-connected, a

a

c

b

d

(a) In a planar graph (b) In a non-planar graph

Fig. 2. Examples of a fundamental system of tie-sets

fundamental system of tie-sets covers all the vertices and edges
as shown in both the planar graph of Fig. 2(a) and the non-
planar graph of Fig. 2(b).

B. FOP-EHWSN with Tie-Set Flows

A flow xλ(t) circulating along a tie-set Lλ ∈ LB at time
t is defined as a tie-set flow with respect to a tie-set Lλ. A
tie-set flow xλ(t) has its direction as shown in Fig. 2(a). Then,
a set of tie-set flows with respect to LB at time t is defined
as X(t) = {x1(t), x2(t), ..., xµ(t)}.

Let Bλ = {bλk} be a set of edge directions with respect to
a tie-set flow xλ(t), where

bλk =

{
1 ek ∈ Lλ, the same direction as xλ(t)
−1 ek ∈ Lλ, the opposite direction to xλ(t)

(19)

For example, B1 and B2 in Fig. 2(a) are determined as follows:
B1 = {b11, b12, b13} = {1, 1, 1}, B2 = {b23, b24, b25} = {−1, 1,−1}.

Once a tie-set flow xλ(t) in Lλ is decided, the edge flow
fk(t) at time t is updated as follows:

fk(t) = fk(t− 1) + bλkxλ(t), for ek ∈ Lλ, (20)

where fk(t− 1) is the edge flow on ek from a previous time
step.

On the basis of (12) and (15), we now define a Tie-set Flow
Optimization (TFO) function ϕλ(fk(t), t) at time t as

ϕλ(fk(t), t) =
∑

ek∈Lλ

ψk(fk(t), t). (21)

The TFO function is converted into the function with the tie-
set flow (TFO-x function) using (20). Here, γ in ψk(fk(t), t)
is 1.

ϕλ(xλ(t), t) =Mλx
2
λ(t) +Nλxλ(t) +Qλ. (22)

where Mλ :=
∑

ek∈Lλ

1
c2k(t)

, Nλ :=
∑

ek∈Lλ

(
2bλkfk(t−1)

c2k(t)

)
,

and Qλ :=
∑

ek∈Lλ

(
f2
k(t−1)

c2k(t)

)
, since b2λk = 1.

As the TFO-x function is a convex function with respect to
xλ(t), the optimal tie-set flow x∗λ(t) is ∂ϕλ(x

∗
λ(t),t)

∂x∗
λ(t)

= 0, i.e.,

x∗λ(t) = − Nλ

2Mλ
. (23)

By iteratively optimizing tie-set flows among a fundamental



system of tie-sets, edge flows are updated in order to satisfy(
∂ϕ1(x1(t), t)

∂x1(t)
, ...,

∂ϕµ(xµ(t), t)

∂xµ(t)

)
→ 0. (24)

Since edge flows are gradually optimized, each tie-set flow
also converges on 0 at the same time.

X(t) = (x1(t), x2(t), ..., xµ(t)) → 0. (25)

IV. DISTRIBUTED CONTROL MODEL FOR FOP-EHWSN
Section III has discussed that solving the FOP-EHWSN

based on tie-sets leads to the global optimization. Now we
show how to realize the tie-set based routing with decentral-
ized algorithms where each node/sensor/base station commu-
nicates with each other independently.

A. Distributed Algorithm for Flow Optimization
In this section, we describe a Distributed Algorithm for Flow

OPtimization (DAFOP) that is conducted in each tie-set.
Let Vλ be the set of nodes included in a tie-set Lλ. Every tie-

set Lλ has a leader node vλl ∈ Vλ that holds the topological
information of Lλ including the routing table to each node
vi ∈ Vλ. At each time step t, a Tie-set Agent (TA)1 that
autonomously navigates a tie-set obtains data of nodes Vλ
in Lλ using Measurement Vector (MV)2 yλ(t) and reports
them to the leader node vλl . The MV contains the data on
previous available energies ai(t− 1), harvested powers gi(t),
and previous edge flows fk(t− 1). Based on the information
above, the leader node of a tie-set conducts the following
procedure, which is written in Algorithm 1.

1) Initialization: Initialization step starts from line 1 to 7
in Algorithm 1. First, vλl initializes the value of its tie-set flow
as xλ(t) = 0. As the data of ai(t − 1) and gi(t) of Vλ have
already been sent to vλl by MV yλ(t) of TA, vλl calculates
ai(t) = ai(t−1)+gi(t) for each vi ∈ Vλ. vλl also obtains the
data of fk(t− 1) for each ek ∈ Lλ.

2) Calculating Tie-set Flow: From line 8 to 33 in Algo-
rithm 1, tie-set flow is calculated. For ek ∈ Lλ, we define
rjλk, where rjλk = {1,−1}. The set of rjλk is denoted as
Rj = {rjλk}. As rjλk is either -1 or 1, there are 2|Lλ|

combinations for Rj . The set of all the combinations of Rj is
expressed as Rλ where Rj ∈ Rλ. The flag in this procedure
is used to check if Rj = {rjλk} satisfies the following rule:

rjλk =

{
1 if fk(t− 1) + bλkxλ(t) ≥ 0,

−1 if fk(t− 1) + bλkxλ(t) < 0.
(26)

If all the elements {rjλk} of Rj meet (26), then flag = 1,
otherwise flag = 0. The flag is initially set as 0. In the while
sentence in Algorithm 1, the optimal x∗λ(t) with proper ck(t) is
calculated. x∗(t) is first set as 0, and then vλl selects Rj from
Rλ. As the channel capacity ck(t) changes according to (3), vλl
sets ck(t) = ai(t)/pk if rjλk = 1, otherwise ck(t) = aj(t)/pk.
Then, vλl calculates the optimal tie-set flow x∗λ(t) according
to (23). After calculating x∗λ(t), v

λ
l checks whether or not

each rjλk satisfies (26). If all of {rjλk} satisfy (26) flag = 1,
otherwise flag = 0. In case that flag = 1 after checking
(26), the while sentence finishes by setting the tie-set flow at

1An autonomous agent that constantly navigates a tie-set to bring the current
state information of Lλ to its leader node.

2MV yλ(t) contains various information of node vi ∈ Vλ at time t such
available energies, harvested powers, edge flows, etc.

Algorithm 1 Distributed Algorithm for FOP-EHWSN
1: Initialize tie-set flow xλ(t) of Lλ as 0.
2: for each vi ∈ Vλ do
3: Obtain ai(t) = ai(t− 1) + gi(t).
4: end for
5: for each ek ∈ Lλ do
6: Obtain fk(t− 1).
7: end for
8: Set flag = 0.
9: while flag ̸= 1 do

10: Set x∗
λ(t) = 0.

11: Select Rj = {rjλk} from Rλ.
12: for each ek(i, j) ∈ Lλ do
13: if rjλk = 1 then
14: Set ck(t) = ai(t)/pk .
15: else
16: Set ck(t) = aj(t)/pk .
17: end if
18: end for
19: x∗

λ(t) = − Nλ
2Mλ

.
20: Set flag = 1.
21: for each ek ∈ Lλ do
22: if fk(t− 1) + bλkx

∗
λ(t) ≥ 0 & rjλk = −1 then

23: Set flag = 0.
24: else if fk(t− 1) + bλkx

∗
λ(t) < 0 & rjλk = 1 then

25: Set flag = 0.
26: end if
27: end for
28: if flag = 1 then
29: xλ(t) = x∗

λ(t).
30: else
31: Remove Rj from Rλ.
32: end if
33: end while
34: for each ek ∈ Lλ do
35: Update edge flow fk(t) = fk(t− 1) + bλkxλ(t).
36: end for

time t as xλ(t) = x∗λ(t), otherwise it is repeated by removing
Rj from Rλ.

3) Updating Flows: After the value of the tie-set flow xλ(t)
at time t has been decided, vλl updates the value of each edge
flow as fk(t) = fk(t−1)+bλkxλ(t) for each edge ek ∈ Lλ as
in the steps 34 to 36 in Algorithm 1, and sends the information
of the edge flows to the all the nodes Vλ in Lλ.

B. Tie-set Based Autonomous Distributed Control (TADiC)

A Tie-set based Autonomous Distributed Control (TADiC)
is the method conducted in a leader node vλl that realizes
completely parallel optimizations among tie-sets, which has
been proposed in [14], [8]. In TADiC, the leader node vλl
in each tie-set exchanges Tie-set Evaluation Function (TEF)3

with adjacent tie-sets to decide process priority for overlapping
resources at every time step. Here, adjacent tie-sets L(Lλ) of
a tie-set Lλ are defined that if Lλ ∩Lj ̸= ∅, Lj is an adjacent
tie-set of Lλ. A leader node also has information of adjacent
tie-sets and the routing table to the leader nodes of L(Lλ).
The TEF in this paper is defined as

Φ(Lλ, t) =

∣∣∣∣∂ϕλ(xλ(t), t)∂xλ(t)

∣∣∣∣ = |2Mλxλ(t) +Nλ|. (27)

3A function that evaluates a tie-set based on the current MV yλ(t) with
certain predefined criteria.
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Fig. 3. The edge flow, energy consumption, and load factor on edges ek ∈ E and the load factor on nodes vi ∈ V by Shortest-path, multi-path, and Tie-set
based algorithms at time t = 100 min.

TABLE II
COMPARISON OF EDGE-CONSTRAINED LOAD FACTOR, NODE-CONSTRAINED LOAD FACTOR, AND ENERGY CONSUMPTION AT t = 100 MIN

Edge-Constrained Load Factor Node-Constrained Load Factor Energy Consumption
Total Max Min Total Max Min Total Max Min

Shortest-Path 0.0777 0.0141 0.0 0.0777 0.0141 0.0 388.31 mJ 50.06 mJ 0.0 mJ
Multi-Path 0.1037 0.0108 0.0 0.1037 0.0121 0.0 518.50 mJ 54.15 mJ 0.0 mJ

Tie-set 0.0529 0.0047 0.000044 0.0529 0.0048 0.00023 434.56 mJ 37.50 mJ 0.48 mJ

If TEF of a tie-set Lλ is the largest among those of adja-
cent tie-sets L(Lλ), then vλl sets its Tie-set Flag (TF)4 as
ζ(Lλ) = 1, otherwise ζ(Lλ) = 0. When a tie-set Lλ gains
process priority over the shared resources, vλl executes DAFOP
described in Algorithm 1. After conducting DAFOP, vλl sets
its TF as 0. Then vλl stands by for ∆t and iterates TADiC
again.

V. SIMULATION AND EXPERIMENTS

We conducted simulations and experiments to testify the
DAFOP with TADiC for solving the FOP-EHWSN problem
as well as analyze the solution and its behavior. The following
simulation conditions are based on the Qualnet parameters
when implemented with all the distributed functions intro-
duced in this paper.

The graph is given with |V | = 20 and |E| = 32 connecting
links at random. The number of tie-sets is µ(G) = |E|−|V |+
1 = 13 where the height of the tree is 5. We have multiple
sources |S| = 5 and single sink |T | = 1. Packet energy pk
at each edge is randomly given between 0.05 mJ to 0.1 mJ.
Each node has a function that produces renewable power gi(t)
between 20 mW to 100 mW at random. Initial available energy
at each node is set as ai(0) = 5000 mJ. The size of the storage
device of each node is ai = 10000 mJ. The net flow export
rate at each source node is fixed as Fi(t) ≡ 300. Time Interval
∆t of conducting TADiC at each tie-set is 1 second.

A. Experimental Results with Snapshot Flows
We first analyze the optimized edge flow fk(100),

energy consumption π(fk(100), 100), edge load factor
wk(fk(100), 100) of every link, and the node load factor
wi(pFi(100), 100) of every node with the snapshot result at
time t = 100 min.

When t = 100 min, the average TEF of all the tie-sets is∑
Lλ∈LB

∣∣∣ ∂ϕλ(xλ(t),t)

∂xλ(t)

∣∣∣
|LB | = 1.34 × 10−15, and the average value

of tie-set flows is
∑

Lλ∈LB
|xλ(t)|

|LB | = 9.93× 10−9, so that (24)
and (25) are almost satisfied.

4When TF ζ(Lλ) = 0, a tie-set Lλ is stand-by; otherwise Lλ is in process
(ζ(Lλ) = 1).

As shown in Fig. 3(a), since Tie-set Based Algorithm
(TBA) constantly optimizes the edge flows with 1-second time
interval to satisfy (24) and (25), all the flows are allocated in
a balanced manner. With optimized edge flows at t = 100
min, energy consumptions and load factors of all the edges
and nodes are also balanced as in Fig. 3(b) - 3(d) where the
maximum value of those factors is minimized as in TABLE
II.

Shortest Path Algorithm (SPA) always allocates the flows on
the minimum energy-cost paths from sources to a sink, where
the summation of packet energies by routings is minimum.
Therefore, the total energy consumption of all the packet
energies by TBA increases with the optimized flows com-
pared with SPA as in TABLE II. Although the total energy
consumption by routings with shortest paths is assured to
be minimum, flows are frequently concentrated on particular
path(s) indicated in Fig. 3.

To reduce the load factors of nodes and edges, multiple-
path algorithm (MPA) allocates the flows in different minimum
cost paths with minimum overlaps of those paths (except the
bottleneck around the sink node) as in Fig. 3. By using MPA,
the maximum edge-load and node-load factor get slightly
lightened than SPA whereas the total load factor increases.
This result indicates that TBA with µ-dimensional optimiza-
tion is a radical improvement for the network traffic congestion
compared with MPA, whose concept has been applied to many
techniques as in Multi-Protocol Label Switching (MPLS).

In the next section, we discuss that minimizing the max-
imum load factor is important in terms of realizing the
assignment of energetically sustainable workload even thought
the total consumption modestly increases.

B. Behavior of Available Energy at Node

This section analyzes the simulated behavior of the chang-
ing process of the available energy ai(t), harvested power
gi(t), and power budget pFi(t) at a certain node from t = 0 to
100 (min) where SPA, MPA, and TBA are compared against
each other. The same conditions as those of previous exper-
iment are also adopted in this section. The simulation data
are shown with 1 minute intervals where Γ = {0, 1, ..., 100}
(min).
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(a) By Shortest-Path Algorithm (SPA).
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(b) By Multi-Path Algorithm (MPA).
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(c) By Tie-set Based Algorithm (TBA).

Fig. 4. The simulated behavior of available energy ai(t), harvested power gi(t), and power budget pFi(t) form t = 0 to 100 (min) at a node vi ∈ V .

We pick up a node vi, (i = 18) that has the largest
power budget. In Fig. 4(a) and 4(b), the available energy
ai(t) frequently runs out because of the large power budget
assigned to vi by employing SPA and MPA. On the other
hand, in Fig. 4(c), as the net flow export from vi has been
distributed to other peripheral nodes by TBA, vi maintains
useful storage life. Therefore, even though the total amount
of energy consumptions modestly increases, it is important to
balance the edge flows to realize the sustainable flow network
that exploits intermittent renewables by energy harvesting
systems.

VI. CONCLUSION

In this paper, we presented a novel distributed flow-based
routing method that solves a flow optimization problem in
energy-harvesting wireless sensor networks (EHWSNs) to
realize the assignment of energetically sustainable workload
on every node. We introduced a distributed algorithm for flow
optimization problem (DAFOP) in EHWSNs where the packet
flows within a tie-set are allocated so that heavily loaded power
budgets are distributed to the nodes with lightly loaded power
budges. DAFOP is repeated among the fundamental system
of tie-sets with the scheme called Tie-set based Autonomous
Distributed Control (TADiC) until the iteration of local opti-
mization makes the entire edge flows optimized.

The experimental results at a certain point of time show
that globally balanced assignment of link flows radically
reduces the maximum load factor in EHWSNs. The result
of comparison experiment at a particular node against the
shortest-path and multi-path algorithms also suggest that the
proposed method achieves sustainable allocation of packet
flows by maintaining the reliable life of storage devices.

APPENDIX A
ANALYSIS ON NODE-CONSTRAINED AND

EDGE-CONSTRAINED NETWORK LOAD FACTORS

Here, we provide the proof that the overall node-constrained
network load factor and edge-constrained network load factor
are the same as in (14). Let m be the number of edges |E| of
a graph G.

Proof: We first look at the node-constrained load factor
wi(pFi(t), t) =

pFi(t)
ai(t)

at node vi. By the definition of pFi(t),

pFi(t)

ai(t)
=

∑
j:i→j

(
pkfk(i, j, t)

ai(t)

)
−

∑
h:h→i

(
pkfk(h, i, t)

ai(t)

)
.

As fk(h, i, t) is negative, fk(i, h, t) becomes positive. Since
fk(i, j, k) and fk(i, h, t) are positive, the capacity of those

flows is ck(t) = ai(t)/pk according to (3). Namely,

pFi(t)

ai(t)
=

∑
j:i→j

(
fk(i, j, t)

ck(t)

)
+

∑
h:h→i

(
fk(i, h, t)

ck(t)

)
.

By the definition of power budget, if edge flow fk(i, j, t) ≥
0, the flow is included in pFi(t), otherwise it is included in
pFj(t). Therefore, the following equation holds true:∑

vi∈V

pFi(t)

ai(t)
=

∑
ek∈E

|fk(t)|
ck(t)

=We(fk(t), t).
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