
A Decentralized Algorithm for Network Flow
Optimization in Mesh Networks

Kiyoshi Nakayama∗, Toshio Koide†
∗Dept. of Computer Science, University of California, Irvine, USA

†Knowledge Discovery Research Laboratories, NEC Corporation, Japan
Email: {kiyoshi.nakayama, toshio-k}@ieee.org

Abstract—In order to evaluate total throughput against given
traffics in an entire network, we formulate a minimum cost flow
problem with quadratic edge functions, which we call Network
Flow Optimization (NFO) problem in this paper. The problem
with quadratic flow costs has been proved to be NP-complete.
However, by dividing a network into a set of loops that represents
a linear vector space, the problem can efficiently be solved. The
theory that deals with the nature of loops of a graph is called
tie-set graph theory where a tie-set represents a set of edges that
constitute a loop. The theory of tie-sets has played a significant
role in solving core problems in the domain of circuits and power
systems as in applications of Kirchhoff’s theory. Therefore, we
propose a novel decentralized algorithm based on tie-set graph
theory to optimize network flows in a mesh network. Global
optimization can be achieved by iterative distributed computation
where flows within a loop are locally optimized. Simulation results
demonstrate the optimal allocation of network flows and show
the superiority over the multi-path routing method.

I. INTRODUCTION

Network flow problems have been studied for a long time
since the birth of graph and network theory [1], [2] as in the
maximum flow problem with given capacities of a network
[3]. In the field of circuits and power systems, the Kirchhoff’s
Current and Voltage Laws also have a very long history
and have demonstrated the effectiveness in controlling power
flows and designing fault-tolerant reliable systems even in
a complicated non-planar meshed topology [4]. While the
concept of Kirchhoff’s Theory seems quite useful for various
applications in network systems, the nature of distributed
computations makes the integration of those theories difficult.
Bridging the gap between the theoretical basis and complexity
in decentralizing computations must lead to breakthrough in
performance improvement of network systems’ applications
giving an enough motivation to overcome this challenge.
Therefore, we develop a decentralized algorithm to be able to
make the Kirchhoff’s theory function in the network systems
domain.

Multi-path (MPATH) routing techniques have been proposed
in the recent literature [5], [6], [7] dealing with creating
efficient loop-free multi-paths. MPATH routing techniques are
often applied to traffic engineering with Multi-Protocol Label
Switching (MPLS) [8], [9], [10]. While these schemes with
distributed computing have been used to achieve an efficient
traffic allocation to improve total throughput in a network,
distributing network flows to several paths has not become a
radical solution to optimize network flows. This is because the

evaluation of total throughput is modeled with a network flow
problem with quadratic edge functions that has been proved to
be NP-complete [11] and difficult to solve in a decentralized
fashion. Therefore, it has been difficult to radically solve the
problem in a distributed manner even if many efforts have
been made to improve throughput with reroutings of network
flows. This gives rise to the study of network flow optimization
integrating the notion of tie-sets in Kirchhoff’s Theory that
has played a significant role in solving convex optimization
problems with quadratic edge functions.

A network flow optimization problem in this paper is to
balance the load factor on every edge by redirecting flows from
heavily loaded links to lightly loaded links on the basis of a
μ-dimensional linear vector space1 defined with the tie-sets,
which consists of local optimization units representing loops in
a network. The previous work on network flow optimization
provides a theoretical basis that proves that a flow problem
with convex edge functions can be formulated with a set of
μ tie-sets where a globally optimum point can be reached if
the necessary and sufficient condition is given and solved on
tie-set basis [12], [13].

In this paper, we propose a completely autonomous control
method and a decentralized algorithm to solve the network
flow optimization problem with simulation experiments using
ARPANET network. The comparison experiment against the
MPATH flow distribution technique also shows the superiority
of the proposed method with a modest delay in convergence.

II. TIE-SET GRAPH THEORY

As the tie-set graph theory is described in [12], [13], [14]
in detail, we provide the basis for the unfamiliar reader.

A. Fundamental System of Tie-sets
For a given graph G = (V,E) with a set of vertices V =

{v1, v2, ..., vn} and a set of edges E = {e1, e2, ..., em}, let
Li = {ei

1
, ei

2
, ...} be a set of all the edges that constitutes a

loop in G. The set of edges Li is called a tie-set [4]. Let
T and T respectively be a spanning tree and a cotree of G,
where T = E − T . μ = μ(G) = |T | is called the nullity of a
graph. For l ∈ T , T ∪ {l} includes one tie-set. Focusing on a
subgraph GT = (V, T) of G and an edge l = (a, b) ∈ T , there
exists only one elementary path PT (b, a) ⊆ T whose origin

1μ is the nullity of a graph as defined in Section II-A

�

�

�

�

�

�

1e

2e
3e

4e

5e
8e

6e

7e

9e
1L

2L

3L
4L

(a) A fundamental system of tie-sets
{L1, L2, L3, L4}.

Tie-set Graph:

1L

2L 4L

3L

(b) The tie-set graph of Fig.
1(a).

Fig. 1. A fundamental system of tie-sets and its tie-set graph [12]. Thick
and thin lines are links of a tree T and a cotree T , respectively.

Fig. 2. An example of a fundamental system of tie-sets in a non-planar
graph.

is b and terminal is a in GT . Then, a fundamental tie-set that
consists of the path PT and the edge l is uniquely determined
as L(l) = {l} ∪ PT (b, a). There are μ fundamental tie-sets
in G and they are called a fundamental system of tie-sets. If
a graph G is bi-connected, a fundamental system of tie-sets
LB = {L1, L2, ...Lμ} covers all the vertices and edges as
shown in the planar graph of Fig. 1(a) and the non-planar
graph of Fig. 2.

Fundamental tie-sets are independent of each other; any
fundamental tie-set cannot be obtained by the calculus ⊕2

among other tie-sets.

B. Tie-set Graph

A graph G = (V ,E) is defined as a tie-set graph, where
a set of vertices V corresponds to a fundamental system of
tie-sets {L1, L2, ..., Lμ}, and a set of edges E is denoted as
{e(Li, Lj)}, (i �= j), which represent the connections among
tie-sets. In this paper, e(Li, Lj) is determined by the set of
common vertices of Li and Lj . Let V (Li) be a set of all the
vertices included in a tie-set Li. If V (Li) ∩ V (Lj) �= ∅, Li

and Lj have an edge e(Li, Lj). Each fundamental tie-set of a
given graph G is uniquely mapped to the specific tie-set graph
G as shown in Fig. 1(b).

III. NETWORK FLOW OPTIMIZATION PROBLEM

In this section, we formulate a Network Flow Optimization
problem.

2The definition of ⊕ for a set A and a set B is defined as follows: A⊕B =
(A− B) ∪ (B −A) = (A ∪ B) − (A ∩ B).

An information flow network N = (G,F,C, s, t) is given
with a directed graph G = (V,E), (|V | = n, |E| = m), a
set of edge flows F = {fk}, (k = 1, 2, . . . ,m), a set of link
capacities (maximum flows) C = {ck}, (k = 1, 2, . . . ,m), a
source node s, and a sink node t. A link ek corresponds to
a k-th communication link (channel) in a network. An edge
flow fk is bounded by

−ck ≤ fk ≤ ck, for ek ∈ E. (1)

Each link is directed with an arbitrarily defined direction,
and a link from node u to v is denoted interchangeably by
either e(u, v) ∈ E or u → v. Let u : u → v and w : v → w
denote the set of predecessors and successors of node v in the
directed graph, respectively. An edge flow f(u, v) is passing
traffic quantity over a link e(u, v) from vertex u to v. When
a flow f(u, v) passes along the direction of an edge e(u, v)
then f(u, v) > 0; otherwise f(u, v) < 0. As an edge flow can
either be positive or negative, the following holds true at node
v:

∑
w:v→w

f(v, w)−
∑

u:u→v

f(u, v) =

⎧⎪⎨
⎪⎩

0, v �= s, t

F , v = s

−F , v = t

(2)

A load factor g(fk) on a link ek is defined as

g(fk) =
fk
ck

, for ek ∈ E. (3)

To quantitatively assess the load factor, let us define a
quadratic edge function ψ(fk) where

ψ(fk) = g2(fk), for ek ∈ E. (4)

Then, we define a network flow function ΦN of the network
N as

ΦN =
∑
ek∈E

ψ(fk), (5)

and we want to minimize ΦN to balance the load factors.
The network flow optimization problem can be consid-

ered as an optimization problem over an edge flow vector
F = [f1, f2, ..., fk]. A diagonal matrix D whose elements are
capacities ck is denoted as D = diag(c1, c2, ..., ck). Then, the
network flow function ΦN is expressed by using F as

ΦN = FD
−2

F
T. (6)

Our objective is to find the solution F that minimizes the
network flow function ΦN in (6). Now we show how to convert
the problem in (6) to an optimization problem over tie-set
flows.

A flow xλ circulating along a tie-set Lλ ∈ LB is defined
as a tie-set flow with respect to a tie-set Lλ. A tie-set flow
xλ has its direction as shown in Fig. 3, where xλ > 0 if it
flows in the same direction as the direction defined for Lλ, and
xλ < 0 otherwise. Then, a tie-set flow vector x with respect
to a fundamental system of tie-sets LB is defined as

x = [x1, x2, ..., xμ]. (7)

a

c

b

d

Fig. 3. An example of the direction of edges and tie-set flows.

The set of all possible tie-set flow vectors is defined as a
tie-set flow vector space. The tie-set flow vector space forms
Euclidean vector space R

μ with dimension μ.
Let B = [bλk] ∈ R

μ×m be a tie-set matrix of a graph G
with respect to LB , where

bλk =

⎧⎪⎨
⎪⎩
0 ek /∈ Lλ

1 ek ∈ Lλ, the same direction as xλ

−1 ek ∈ Lλ, the opposite direction to xλ

(8)

For example, B = [bλk] in Fig. 3 is determined as follows:

B =

[
1 1 1 0 0
0 0 −1 1 −1

]

We select an arbitrary set of initial flows {ξk}, and define
an initial flow vector as Ξ = [ξ1, ..., ξm]. A set of initial flows
satisfies (1) and (2). Then, the edge flow vector F is expressed
as

F = xB+Ξ. (9)

Using (9), the network flow function (6) is transformed into
a function of the tie-set flow vector x as

ΦN (x) = (xB+Ξ)D−2(xB+ Ξ)T

= xBD
−2

B
T
x
T + 2xBD

−2
Ξ

T +ΞD
−2

Ξ
T,

(10)

since xBD
−2

Ξ
T = ΞD

−2
B

T
x
T. Therefore, the network

flow function (10) is expressed as

ΦN (x) = xMx
T + xN+ e, (11)

where M := BD
−2

B
T, N := 2BD

−2
Ξ

T, and e :=
ΞD

−2
Ξ

T.
Let C = [c1, c2, ..., ck] be a capacity vector consisting of

the capacities ck. Given B, C, D, and Ξ, the Network Flow
Optimization (NFO) problem is

min ΦN (x) = xMx
T + xN+ e, (12)

s. t. −C ≤ xB+Ξ ≤ C. (13)

For a given initial flow vector Ξ, the NFO problem is to
find μ tie-set flows such that the value of the network flow
function is minimum, i.e. find the point x = x

∗ ∈ R
μ at

which ΦN(x∗) is minimum in the tie-set flow vector space
R

μ. As the network flow function ΦN (x) is differentiable on
R

μ, the necessary and sufficient condition for x = x
∗ to be the

TABLE I
NOTATIONS AND DEFINITIONS FOR ADCT

MV yλ(t) Measurement Vector. MV yλ(t) contains various in-
formation of nodes vi ∈ V (Lλ) and links ek ∈ Lλ

at time t such as current edge flows.
TA Tie-set Agent. An autonomous agent that constantly

navigates a tie-set to bring the current MV yλ(t) with
state information of Lλ to its leader node.

TEF Φ(Lλ) Tie-set Evaluation Function. A function that evaluates
a tie-set based upon the current MV yλ(t) with
certain predefined criterion.

TEFM Tie-set Evaluation Function Message. A message
used to exchange the value of TEF Φ(Lλ) with
adjacent tie-sets L

a

λ
.

TF ζ(Lλ) Tie-set Flag. When ζ(Lλ) = 0, a tie-set Lλ is stand-
by; otherwise Lλ is in process (ζ(Lλ) = 1).

TFS Tie-set Flag Signal. A signal to notify the state of TF
ζ(Lλ).

optimal point of NFO problem is that the gradient of ΦN (x∗)
is zero [13]. Namely, at x = x

∗,

∇ΦN (x∗) =

(
∂ΦN(x∗)

∂x1

, ...,
∂ΦN (x∗)

∂xμ

)
= 0. (14)

IV. DISTRIBUTED ALGORITHMS FOR NETWORK FLOW
OPTIMIZATION PROBLEM

Now we show how to solve NFO problem by local opti-
mization with respect to μ independent tie-sets that leads to
the global optimization.

A. Fundamental Distributed Algorithms based on Tie-set
1) State Information of a Node: Each node vi mainly has

the following state information [15]:
Tie-set Information: Information of fundamental tie-sets to

which vi belongs. When vi ∈ V (Lλ), it is defined that vi
belongs to Lλ and has information of Lλ.

The node c in Fig. 1(a), for example, has state information
of {L1, L2, L3} as Tie-set Information. Each node executes
a Distributed Algorithm for Tie-set Information Configuration
(DATIC) to recognize fundamental tie-sets to which the node
belongs [16].
2) Communications among Tie-Sets (CAT): In addition to

state information described in IV-A1, a leader node vλl of a
tie-set Lλ has the additional information below to conduct
CAT:
Adjacent Tie-sets L

a
λ = {Lλ

1
, Lλ

2
, ...}: An adjacent tie-set

Lj of Lλ is determined according to e(Lλ, Lj) ∈ E of G.
For instance, adjacent tie-sets of L1 in Fig. 1(a) are L

a
1
=

{L2, L3} so that L1 constantly communicates with {L2, L3}.

B. Autonomous Distributed Control in Tie-set
We propose an Autonomous Distributed Control in Tie-set

(ADCT) that is conducted in a leader node in each tie-set. The
notations and definitions for ADCT are found in TABLE I.
In this research, we use Φ(Lλ) =

∣∣ d
dxλ

φ(xλ)
∣∣ as TEF where

φ(xλ) is defined in (15) in Section IV-C. Then, the procedure
of ADCT is explained as follows:
1) Initialization: In Initialization, TEF of a tie-set Lλ is

set as Φ(Lλ) = 0. TF of Lλ is also set as ζ(Lλ) = 0. Then,
Lλ calls Send.
2) Send: In Send, the value of TEF Φ(Lλ) is calculated

based upon the current MV yλ(t) provided by TA that
constantly navigates Lλ. After calculating Φ(Lλ), Lλ writes
its TEF value into TEFM. Then, Lλ sends TEFM to all the
adjacent tie-sets L

a
λ.

3) Receive: Receive is called when Lλ receives TEFM.
Until Lλ receives TEFM from all the adjacent tie-sets L

a
λ, Lλ

stands by to receive another TEFM. After receiving TEFM
form all of La

λ, Lλ calls Compare.
4) Compare: In Compare, Lλ compares its value of Φ(Lλ)

with those of adjacent tie-sets. If the value of Φ(Lλ) is the
largest among those of all the adjacent tie-sets, Lλ sets its TF
as ζ(Lλ) = 1, otherwise ζ(Lλ) = 0. If the value of Φ(Lλ)
is the same as Φ(Lj), Lλ uses another TEF Φ(Lλ) to decide
the process priority such as Φ(Lλ) = Random. Then, Lλ calls
Optimize.
5) Optimize: If ζ(Lλ) = 1, Lλ conducts Decentralized

Algorithm for Tie-set Flow Optimization (DATFO) described
in Algorithm 1. Then, Lλ sets its TF as ζ(Lλ) = 0, and calls
Notify.
6) Notify: In Notify, Lλ sends TFS to each adjacent tie-set

Lj ∈ L
a
λ to notify that ζ(Lλ) = 0.

7) Confirm: Confirm is called when Lλ receives TFS
from all the adjacent tie-sets L

a
λ after Optimize. In case that

Optimize is not finished, TFS is temporarily stored in Lλ.
Until Lλ receives TFS from all of L

a
λ, Lλ waits for another

TFS. After receiving TFS form all of L
a
λ, Lλ confirms that

each TF of Lj ∈ L
a
λ is ζ(Lj) = 0. Then, Lλ calls Send again

so that ADCT is iterated.
The flowchart of ADCT is described in Fig. 4.

C. Decentralized Algorithm for Tie-set Flow Optimization
Decentralized Algorithm for Tie-set Flow Optimization

(DATFO) is described in Algorithm 1 and called by ADCT.
In STEP 0, DATFO initializes the value of a current tie-set

flow xλ of Lλ as 0. The information of current edge flows
Ξλ = {ξk} of ek ∈ Lλ has been provided by MV yλ(t)
included in TA at time t.

Let φ(xλ) be a Tie-set Flow Optimization (TFO) function
of a tie-set Lλ defined as

φ(xλ) =
∑

ek∈Lλ

(
bλkxλ + ξk

ck

)2

. (15)

In STEP 1, DATFO calculates the optimal tie-set flow xλ with
the current edge flows Ξλ = {ξk} to satisfy

d

dxλ

φ(xλ) =
d

dxλ

∑
ek∈Lλ

(
bλkxλ + ξk

ck

)2

=
∑

ek∈Lλ

d

dxλ

(
bλkxλ + ξk

ck

)2

= 0, (16)

���������	

	�

�

�	����������

�	�	��	�����

���������	
��

���������� �

�����	�����

������������

��

������������	
����
	�

��	� ����

	�� �

�

����! ��

�� "�

���#���$%��&

	�

�	�	��	���

�

���������	���

���������� �

'���	���	����#	���

����������

����#���	�����(��	��

���#��	���

	�

������

���

�������	�	�!������

���"

Fig. 4. Autonomous distributed control in tie-set (ADCT).

��������� �������

�������

��	
�

�������� ������

	
�������

Fig. 5. Example for DATFO.

i.e.,

xλ = −

∑
ek∈Lλ

bλkξk/c
2

k∑
ek∈Lλ

1/c2k
, (17)

since bλk
2 = 1.

In STEP 2, each edge flow fk on ek ∈ Lλ is updated to
bλkxλ+ξk where edge flows on Lλ are optimized to minimize
the TFO function φ(xλ) of Lλ.

Algorithm 1 Decentralized Algorithm for Tie-set Flow Opti-
mization (DATFO)
STEP 0:

Initialize a current tie-set flow xλ of Lλ as 0.
Get current flows Ξλ of Lλ provided by MV yλ(t) of TA.

STEP 1:
Calculate xλ according to (17).

STEP 2:
for each fk on ek ∈ Lλ do

Update an edge flow fk to bλkxλ + ξk.
end for

An example of DATFO is shown in Fig. 5. In Fig. 5,
the value of the TFO function before conducting DATFO is
φ(xλ) = 1.510, and the value after DATFO is φ(xλ) = 0.215.

V. SIMULATION AND EXPERIMENTS

To verify the proposed method and analyze its performance
as well as to solve the NFO problem described in section III,
a simulator has been implemented in Java. To consider a real
network’s size and structure, the topology of the simulation
network is based on ARPANET network (see Fig.6 of [17]),
which has a bi-connected graph G = (V,E) with 20 nodes and
32 links. The number of tie-sets is 13 and the height of a tree
is 5, where the tree is created by Dijkstra’s algorithm giving
random costs on links. We use Common Buffering Method and
Polling Method in a node. Each link capacity ck is randomly
assigned as 50 ≤ ck ≤ 100 (k = 1, 2, ...,m). Every ties-set
conducts ADCT with the time interval of 1 ms, and MV yλ(t)
is constantly sent to a leader node of each tie-set. Experiments
are conducted 20 times for each simulation below and we
calculated the average value to capture general behavior.

A. Optimized Flows in ARPANET Network
We assign initial flows on a loop-free path from the given

source s to sink t where the number of links on the path is
10. The value of each initial flow is uniformly assigned as

Fig. 6. Optimized edge flows in the ARPANET network with 20 nodes and
32 edges.

Fig. 7. Optimized values of edge functions in the ARPANET network with
20 nodes and 32 edges.

|ξk| = 50. Experimental data are taken when every tie-set
satisfies −1× 10−3 < d

dxλ

φ(xλ) < 1× 10−3.
Fig. 6 and Fig. 7 respectively show the value of the edge

flow fk and the edge function ψ(fk) on each ek ∈ E before
and after optimization in the ARPANET network. Those data
are sorted in ascending order. As in the results shown in Fig.
6 and Fig. 7, all the edge flows are allocated in a balanced
manner so that the value of the edge function of every link is
minimized.

In this experiment, the network flow function ΦN before
and after optimization is ΦN = 5.279 and ΦN = 0.774,
respectively. The time to complete the optimization is 45 (ms).
The total number of computations for ADCT and DATFO is
421 and 72, respectively.

Aside from the ARPANET network, we also conducted
experiments in randomly created 100-, 200-, 300-, and 400-
node networks assuring their bi-connectivity. Those results are

TABLE II
EXPERIMENTS IN NETWORKS WITH 100, 200, 300, 400 NODES

(|V |, |E|) (100, 192) (200, 392) (300, 592) (400, 792)
Initial ΦN 5.286 5.047 5.141 4.995

Optimal ΦN 0.519 0.352 0.417 0.486
Time (ms) 225.50 226.75 599.00 1275.00

Fig. 8. Convergence of Network Flow Function ΦN by Tie-set and MPATH
based computations from time t = 0 to 50 (ms).

shown in TABLE II. From TABLE II, the optimized values of
ΦN in those networks show more than 90% reduction of initial
ΦN on average. This result indicates the radical improvement
of throughput over an entire network. Although the time to
complete optimization shows some quadratic increase, it is
still feasible within a few seconds.

B. Comparison of Convergence Behavior with MPATH
In this experiment, we analyze the convergence behav-

ior of the proposed optimization technique and compare it
against Multiple Path computing method, which is often called
MPATH, using the ARPANET network. MPATH provides
multiple paths between each source-sink pair that need not
necessarily have equal costs and that are loop-free at every
instant (see [5]-[7] in detail). Simulation conditions are the
same as those of the previous experiment.

As indicated in Fig. 8, MPATH converges faster than
the proposed method as MPATH calculates different paths
instantly and allocates flows on those paths. On the other
hand, the proposed method based on tie-sets takes longer to
converge on the optimal value than MPATH as it requires
iterative computation within a fundamental system of tie-sets.
The convergence line by Tie-set demonstrates subtle decrease
throughout the optimization time span of Fig 8, whereas
the network flow function ΦN by MPATH does not change
once it converges. The iterative computation based on tie-sets
eventually realizes d

dxλ

φ(xλ) → 0 so that the performance
of the proposed method shows superiority over distributing
flows by MPATH after t ≈ 5 (ms). This result substantiates
the optimization based on Tie-set performs better than MPATH
once the network flows of an entire network are optimized.

VI. CONCLUSION AND FUTURE WORK

In this paper, a network flow optimization (NFO) problem
is first formulated with a tie-set flow vector space created on
the basis of a fundamental system of tie-sets that represents
a set of independent loops that underlie a mesh network.
Then, we proposed a decentralized algorithm based on Tie-
set to solve NFO problem where the computation to calcu-
late optimal flows in a tie-set is iterated among the system
of tie-sets. Simulation results in a 20-node network based
on ARPANET and randomly created networks with 100 to

400 nodes demonstrate optimal flow allocations so that total
throughput of an entire network has radically improved. The
comparison experiment against the multiple path (MPATH)
technique for flow distribution also shows the superiority of
the proposed method with a modest delay in convergence.

The OpenFlow project [18] aims to include more flexible
flow and path computation so that many optimization tech-
niques can be implemented with open source environment.
Therefore, we will integrate our decentralized algorithm into
the OpenFlow Controller as a practical application of the
proposed method.

ACKNOWLEDGMENT

The authors would like to thank researchers at Open Net-
work Research Center (ONRC) at Stanford University for their
invaluable comments and suggestions.

REFERENCES

[1] S. Even, R. Tarjan, Network flow and testing graph connectivity,
Princeton University Press, Princeton, NJ, USA 1975.

[2] T. Fujisawa, Maximal flow in a lossy network, Proc. of First Annual
Allerton Conference on Circuit and System Theory, 1963, pp. 385 - 393.

[3] D. R. Ford, D. R. Fulkerson, Flows in Networks, Princeton University
Press, Princeton, NJ, USA 1962.

[4] M. Iri, I. Shirakawa, Y. Kajitani, S. Shinoda, etc, Graph Theory with
Exercises, CORONA Pub: Japan, 1983.

[5] S. Vutukury, J.J. Garcia-Luna-Aceves, MPATH: A Loop-free Multipath
Routing Algorithm, Elsevier Journal of Microprocessors and Microsys-
tems, 2000, pp. 319–327.

[6] J. Chen, P. Drushel, D. Subramanian, An efficient multi-path forwarding
method, Proc. of IEEE INFOCOM, 1998, Vol.3, pp. 1418-1425.

[7] J. Chen, P. Drushel, D. Subramanian, A simple, practical, distributed
multi-path routing algorithm, Technical Report No. 98-320, Rice Uni-
versity, 1998.

[8] Xiao X, Hannan A, Bailey B, Ni LM, Traffic engineering with MPLS
in the Internet, IEEE Networks 2000, 14(2):2833.

[9] Y. Lee, Y. Seok, Y. Choi, A constrained multipath traffic engineering
scheme for MPLS networks, IEEE International Conference on Commu-
nications (ICC), 2002, pp. 2431-2436.

[10] S. Yongho, Y. Lee, Y. Choi, C. Kim, Dynamic constrained multipath
routing for MPLS networks, Proc. of IEEE International Conference on
Computer Communications and Networks, 2001, pp. 348-353.

[11] P. P. Herrmann, On reducibility among combinatorial problems, Report
No TR-113, Project MAC, Massachusetts Institute of Technology, Cam-
bridge, MA, 1973.

[12] N. Shinomiya, T. Koide, H. Watanabe, A theory of tie-set graph and its
application to information network management, International Journal
of Circuit Theory and Applications 2001; 29:367-379.

[13] T. Koide, T. Kubo, H. Watanabe, A study on the tie-set graph theory
and network flow optimization problems, International Journal of Circuit
Theory and Applications 2004, 32:447-470.

[14] J. Malinowski, A new efficient algorithm for generating all minimal
tie-sets connecting selected nodes in a mesh-structured network, IEEE
Transactions on reliability 2010; 59(1): 203 - 211.

[15] K. Nakayama, N. Shinomiya, H.Watanabe, An autonomous distributed
control method for link failure based on tie-set graph theory, IEEE
Transactions on Circuits and Systems-1, Regular Paper, Vol. 59, No.
11, 2012, pp. 2727 - 2737.

[16] K. Nakayama, K. Benson, V. Avagyan, M. Dillencourt, L. Bic, N.
Venkatasubramanian, Tie-set Based Fault Tolerance for Autonomous Re-
covery of Double-Link Failures Proc. of IEEE Symposium on Computers
and Communications (ISCC), July, 2013.

[17] M. Mdard, etc., Generalized Loop-Back Recovery in Optical Mesh
Networks, IEEE/ACM Transactions on Networking, Vol. 10, No. 1, Feb.
2002, pp. 153 - 164.

[18] N. McKeown, etc., OpenFlow: Enabling Innovation in Campus Net-
works, ACM SIGCOMM Computer Communication Review, Vol. 38,
Issue 2, pp.6974, April 2008.

