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Abstract—The power systems worldwide have been embracing
the rapid growth of distributed energy resources. Commonly,
distributed energy resources exist in the distribution level, such
as electric vehicles, rooftop photovoltaic panels, and home battery
systems, which cannot be controlled by a centralized entity like a
utility. However, a large number of distributed energy resources
have potential to reshape the power generation landscape when
the owners (prosumers) are allowed to send electricity back
to the grids. Transactive energy paradigms are emerging for
orchestrating the coordination of prosumers and consumers by
enabling the exchange of energy among them. In this paper,
we propose a transactive energy auction framework based on
blockchain technology for creating trustworthy and transparent
transactive environments in distribution networks, which does
not rely on a centralized entity to clear transactions. Moreover,
we propose intelligent decentralized decision-making strategies
by bandit learning for market participants to locally decide
their energy prices in auctions. The bandit learning approach
can provide market participants with more benefits under the
blockchain framework than trading energy with the centralized
entity, which is further supported by the preliminary simulated
results conducted over our blockchain-based platform.

Index Terms—transactive energy auctions, distributed en-
ergy resources, decentralized decision-making, bandit learning,
blockchain

I. INTRODUCTION

The current power distribution systems are under an over-
whelming trend of rapidly growing of distributed energy
resources (DERs), such as rooftop photovoltaic panels, electric
vehicles, and stationary battery storages. The low-voltage
energy provided by DERs is more flexible and can be remotely
controllable as part of the Internet of Things. Therefore, DERs
are expected to be adopted intelligently to reduce costs, offset
volatility, and integrate more renewable resources through a
coordination mechanism among autonomous prosumers [1].
Transactive energy (TE) provides a promising solution for
effectively incentivizing DERs [2], [3], [4], in which DER
operational decisions are made based on market value informa-
tion. However, in the current distribution systems, prosumers
can only sell energy to the centralized distribution system
operator (DSO) like a utility who could be a monopoly for
organizing an inefficient market. The small-scale prosumers
are disadvantaged in the negotiation with DSO regarding the
payments for their DER services, which may discourage the
adoption of DERs [5].

In this work, we propose a blockchain-based TE market
paradigm which organizes an efficient and trustworthy trading

market with the assistance of asymmetric encryption, digital
signature, distributed and consensus mechanism [6]. With
smart contracts, transactions among untrustworthy entities can
be executed automatically under predefined conditions, which
is independent of any third entity. There has been limited work
about deployment of blockchain in energy transaction field [7],
[8], [9], [10], [11]. Only [10], [11] study into utilizing smart
contract to perform a distributed auction for energy market.
The work in [10] considers independent Vickrey auctions
whenever a seller has some energy to offer, which makes
trading activities intractable for buyers, and no intelligent
bidding strategies is given. An adaptive quotation strategy
for participants is proposed in [11] which is heuristic and
does not consider opponents’ animosity when all participants
attend the same auction. In this study, we introduce intelligent
pricing strategies by bandit learning over transaction history,
by which distributed agents can locally decide its quotation
price without knowing others’ information and achieve higher
expected rewards in auctions than trading with centralized
utility. The animosity of opponents can be taken care by the
interaction dynamics of the multi-armed bandit (MAB) game
framework [12] when every agent is solving its MAB problem.

II. DOUBLE AUCTIONS OVER BLOCKCHAIN-BASED
ENERGY TRADING PLATFORM

A. Blockchain-based Platform Infrastructure

The proposed blockchain-based TE market platform in a
distribution system consists of three entities including pro-
sumers, common consumers, and DSO. Since deposit and bill
statements will be settled according to metering values at the
end of each transaction window, we assume that participants
have smart meters communicating their usage and generation
readings with smart contracts. Every participant maintains an
account with unique encrypted address for signed transactions
that are settled through crypto-currencies (e.g. 1 Ether ≈ $115
at the time of writing).

Figure 1 describes the trading platform for the transactive
energy framework utilizing blockchain. As shown in Figure
1, smart contracts are converted into binary data and stored
in the chain. Using contract modifiers, smart contracts can
describe who can access which functions and what functions
can modify which data. As in Figure 1, the smart con-
tract mainly has five functions: Quotes Submission, Auction
Clear, Payment Delivery, Smart Metering, and Deposit &



Bill Settlement. The detail of each function is explained in
Section IV. Access to each function is restricted depending
on function callers. For instance, Quotes Submission can only
be accessed by prosumers and consumers whereas Deposit &
Bill Settlement is only conducted by utilities as the function
is about utility settlement process. In particular, utilities can
contribute to Auction Clear only if there are not sufficient
votes from the participants or the votes are equally dispersed.
Also, each function is clearly mapped to its data storage in the
smart contract while time index and address data are utilized
whenever they are needed by the functions listed in Figure 1.

Figure 1. Blockchain-based TE Market Platform

B. Double Auction Mechanism

The transactive energy infrastructure involves interactions
between sellers and buyers by holding a forward local energy
market. The competitive equilibrium model by double auction
is able to clear a market at the equilibrium price and achieve
a balance between supplies and demands [13], [14]. When
energy sellers and buyers interact their bids and offers, the
equilibrium (Q∗, P ∗) will be at the intersection of the supply
and demand curves. As shown in Figure 2, the supply curve is
formed by sellers’ quotes in ascending order of their offering
prices and the demand curve is formed by buyers’ quotes in
descending order of their bidding prices. The consumer agents
whose bid is not lower than the equilibrium price P ∗ are
trading at the equilibrium price. Similarly, all the supplier
agents whose offer is not higher than the equilibrium are
trading at the equilibrium price. The time-of-use (TOU) and
feed-in-tariff (FIT) rates, which will be used in the utility
settlement phase later, would be the baseline cases for buyers
and sellers, respectively. Therefore, TOU and FIT become the
practical boundaries for quotes in the auction as in Figure 2.

The blockchain-based distributed mechanism enables any
authorized node in the network to clear the market without
depending on any third authority as an auctioneer, and thus the
equilibrium matching double auction mechanism can achieve
an efficient market with the optimal social welfare given the
submitted bids and offers [15], [16].

Figure 2. Market clear by equilibrium matching double auction for a
transaction window

III. DECENTRALIZED APPLICATIONS FOR TRANSACTIVE
ENERGY AUCTIONS

A. Energy Quantity Forecast

To decide the energy quantity to bid or offer in an auction,
participants conduct load and generation forecasting. Since
auctions are held for the near future, we assume that par-
ticipants can accurately forecast their energy amount to bid
or offer by using their historical data from the same time
slot of the previous days with similar weather conditions. The
forecasting model is beyond the scope of this work. Herein,
we simply let f t,wi (X) denote the energy quantity forecast
model of a participant i in time slot t under weather condition
w, where X is the set of model inputs. Prior to the auction of
transaction window t in day d, the participant i forecasts its
energy quantity q̂d,ti ∼ f t,wi (X) by using the historical data,
where positive values are for selling and negative values are for
buying. As mentioned, the forecast is conducted for the near
future, the expected forecast error ed,ti and associated risk can
be small for participants. Once the participant i submits the
quote with q̂d,ti , he has to commit to the amount. The deviated
amount by forecast error has to be exercised with the DSO
with the high voltage system in the wholesale market. Thus,
we can have the following balance equation for the distribution
system in real time:∑

i∈B∪S(q̂
d,t
i + ed,ti )−Qd,t

Grid = 0 (1)

where B and S denote the buyers set and sellers set, respec-
tively, and Qd,t

Grid is the energy injected into (when positive)
or withdrew from (when negative) a bulk power grid by the
DSO in real time.

B. Pricing Strategy with Bandit Learning

Without the transactive auctions, the agents can only buy at
TOU Pu from the DSO or sell to the DSO at FIT Pf . The
auctions under transactive energy paradigms enable market
participants to exchange energy instead of trading with the
DSO at FIT or TOU rate, which could improve participants’
benefits with more competing rates, i.e. higher rates than FIT
for sellers (here we consider zero marginal generation cost for
DERs) and lower rates than TOU for buyers. Therefore, any
rate between FIT and TOU is attracting to both buyers and
sellers, and thus any reasonable agent will select its bidding
or offering price pti ∈ (P t

f , P
t
u) to compete against other agents

in the auction of transaction window t, as shown in Figure 2.



This type of problem is considered as a MAB problem as
it is about how to pick up the best price option to improve
expected cumulative rewards across the transactions. Refer to
[17], [18] for the overview of MAB problem. Consider days
(1, . . . , D) and in each day there are transaction windows
(1, ..., T ). Then, the expected cumulative reward E[RΣ

i ] for
a participant i is as below in (3):

Rd,t
i = pd,tclrq

d,t
i,clr︸ ︷︷ ︸

reward from auction

+ pd,ti,unclrq
d,t
i,unclr︸ ︷︷ ︸

reward from DSO

(2)

E[RΣ
i ] = E[

∑D
d=1

∑T
t=1R

d,t
i ] (3)

where pd,tclr is an auction clear price (P ∗) of the transaction
window t in day d which is decided by all participants’
submitted quotes (q̂d,ti , pd,ti ). The quantities qd,ti,clr and qd,ti,unclr

respectively are the accepted and unaccepted energy amount
of q̂d,ti in the participant i’s quote cleared by the auction. Then,
we can have:

qd,ti,clr + qd,ti,unclr = q̂d,ti (4)

If qd,ti,unclr > 0, the energy is sold to a utility at FIT, i.e.
pd,ti,unclr = P t

f . Otherwise, the energy is purchased from a
utility at TOU, i.e. pd,ti,unclr = P t

u. As shown in Equation 2,
the reward received in each transaction window consists of the
revenues (or costs) from the auction and the DSO.

Therefore, each participant’s reward is dependent on the
auction clear result which is decided by all participants’
quotes. A recent breakthrough in [12] about MAB-game pro-
vides good theoretical foundations to deal with the interactions
among the participants’ quotes. The work in [12] has proved
that when all agents in a system are solving its own MAB
problem using regret-minimization strategies, the interactions
will lead to a steady state with a stationary population profile.
In this context, when participants make decentralized decisions
by solving interlinked MAB problems to price their energy
against others’ quotes, their expected rewards can converge
to a level higher than trading with the DSO, which is shown
in our preliminary simulation results in Section V. Classic
bandit learning algorithms such as UCB1, EXP3, and their
variants [17], [18] can be applied to pricing strategies of each
participant by considering price options as action arms in
the auction game. Through bandit learning, participants will
have their expected rewards converged. We describe how a
participant applies UCB1 and EXP3 for pricing its energy in
the auctions of MAB games, respectively, in Algorithm 1 and
Algorithm 2. In Algorithm 1 of UCB1, price options in each
transaction window have their own history that consists of two
elements, the number of time of being chosen and empirical
mean reward. In Algorithm 2 of EXP3, a list of weights for the
K price options is maintained for each transaction window and
is used to compute probability distribution of price options.

Since each transaction window is independent from other
windows in a day, each transaction window across multiple
days is considered as a separate series of auction games. The
participant applies the algorithms to learning over the price
options of each transaction window according to previous

Algorithm 1 UCB1
Parameter: real σ ∈ [0, 1]
Initialization: r̄tj = 0 for j = 1, . . . ,Kt and t = 1, . . . , T .
1: Set d← 1
2: while True do
3: for t = 1, . . . , T do
4: if d ≤ Kt then
5: Randomly draw a random price option j∗ that has not been

drew before from Kt price options.
6: Receiving initial value for r̄tj∗ ∈ [0, 1].
7: Set nt

j∗ ← 1.
8: else
9: Draw price option j∗ := arg maxj

(
r̄tj +

√
(2σ ln d)/nt

j

)
from Kt options.

10: Receiving normalized reward rtj∗ (d) ∈ [0, 1].
11: Update r̄tj∗ for selected price option j∗.
12: Set nt

j∗ ← nt
j∗ + 1.

13: end if
14: end for
15: d← d+ 1
16: end while

Algorithm 2 EXP3
Parameter: real γ ∈ (0, 1]
Initialization: wt

j = 1 for j = 1, . . . ,Kt and t = 1, . . . , T .
1: Set d← 1
2: while True do
3: for t = 1, . . . , T do
4: Set pj ← (1− γ)wt

j/
∑Kt

k=1 w
t
k + γ/Kt for j = 1, . . . ,Kt.

5: Draw price option j∗ randomly by the distribution of pj .
6: Receiving normalized reward rtj∗ (d) ∈ [0, 1].
7: Set wt

j∗ ← wt
j∗ exp

(
γrtj∗ (d)/(Ktpj∗ )

)
8: end for
9: d← d+ 1

10: end while

days’ auction clear results. The reward received from each
auction is calculated as in Equation 2 and normalized by the
best and worst case as shown in Equation 5. For a seller in
transaction window t, the best case is that its quote is fully
accepted in the auction and exercised at the highest price
option P = max{p ∈ Z|P t

f < p < P t
u}. In contrast, for a

buyer, the best case is fully buying energy at the lowest price
option P = min{p ∈ Z|P t

f < p < P t
u}. The worst case for

sellers and buyers is that the quote is not accepted and the
energy is transacted in the normal utility settlement phase.

rt(d) =

{
(Rd,t

i − q̂
d,t
i P t

f )/(q̂
d,t
i (P − P t

f )) if i is a seller
(Rd,t

i − q̂
d,t
i P t

u)/(q̂
d,t
i (P − P t

u)) if i is a buyer
(5)

IV. TRANSACTION SETTLEMENT WITH BLOCKCHAIN

The blockchain-based transactive energy architecture im-
plements five essential steps to conduct settlement for each
transaction window, including (1) quotes submission, (2) auc-
tion clear, (3) payment delivery, (4) smart metering, and (5)
deposit and bill settlement. The specific process of each step
is described below:

1) Quotes Submission: Prior to an auction, participants
make decentralized decisions for their quote (q̂d,ti , pd,ti ) as
described in Section III-A and Section III-B. Then, along with
submitting quotes, participants need to transfer deposit from
their account to smart contracts. The deposit amount xd,ti in-
sures the quantity q̂d,ti at TOU, i.e. xd,ti = P t

u|q̂
d,t
i | > pd,tclr|q̂

d,t
i |.



The deposits are held by smart contact for enforcing commit-
ment by participants, and thus can prevent fraudulent quotes.
The quotes and associated deposits should be submitted within
the predefined period and sealed with an encrypted address for
privacy protection.

2) Auction Clear: The auction clear period starts right after
the quote submission ends. As the quotes are revealed and
advertised to the blockchain network, all the participants in
the network can clear and verify the double auction on their
own. In smart contract, we have a storage space for cleared
price and quantity pair information at each time window of
the auction. Authorized market participants perform auction
clear as described in Section II-B through the predefined smart
contract and publish their results within a time period. Market
results of different nodes cleared by the smart contract shall
be identical for the same set of quotes with the consistent
auction clearing mechanism. However, if someone in the
market believes it is not accurate or fair, that participant can
post another cleared market price and quantity info pair in
the smart contract. If one of the pairs of cleared market
info receives more than 50% of votes, at that moment, that
pair of price and quantity becomes the final cleared market
information. Otherwise, the pair that receives the most votes
becomes the cleared market info pair.

3) Payment Delivery: Once the price pd,tclr and quantities
(qd,ti,clr, q

d,t
i,unclr) are decided, the smart contracts deployed by

authorized nodes match up quotes with peer-to-peer payment
delivery. The accepted quotes of buyers and sellers are sorted
in decreasing order of their absolute transacted monetary value
ad,ti = |pd,tclrq

d,t
i,clr|, respectively. Then, the first buyer b transfers

the amount of max(ad,tb , ad,ts ) to the first seller s. Once a buyer
pays up or a seller is paid up, it is removed from the queue. The
total payment sent by buyers is the same as the total payment
received by sellers. For buyers, if payments are transferred
without default, the deposit will be returned. Otherwise, the
default amount will be charged from the deposit and the rest
will be returned. The sellers’ deposit will still be held at this
step. The monetary transactions can be separated from the OPF
dispatch that is conducted by the DSO. It can also be solved
by Smart Contract with blockchain, which is a potential future
research direction.

4) Smart Metering: In real time, the sellers inject energy
into the system. The DSO is responsible for dispatching the
mismatch of supplies and demands based on the values of
smart meters recorded in the smart contract in the blockchain
network. If a seller is generating less than the committed
quantity, the deviated amount will be charged at TOU by
the DSO from its deposit and the utility will make up the
deviation for demand-supply balance. Thus, the buyers’ benefit
will be insured by the sellers’ deposit. Any generation surplus
or demand deficit will be exercised at FIT with the DSO.

5) Deposit and Bill Settlement: At the end of the transac-
tion window, the readings from smart meters are compared
with the auction clear result, and the corresponding bill
statements are generated for market participants. Any quantity
deviation from the submitted quotes will be settled at TOU

or FIT with the DSO. The deposit will be returned after
accounting for default.

V. NUMERICAL RESULTS

We implement the proposed TE market and quotation strate-
gies on the simulated network of the 56-bus sample test feeder
[19] as shown in Figure 3. Bus 1 is used as the reference
bus, and represents the DSO in the network. There are 100
prosumers and 100 consumers who are randomly distributed
over the network.

Figure 3. The 56-bus sample test feeder

We consider the simulation for the same season of 100 days
for 3 years, and each day consists of 24 hourly transaction
windows. Therefore, there are 24 series of 300-round auction
games. Each participant randomly chooses from UCB1-tuned,
UCB1-normal, UCB2, ε-Greedy, EXP3 [17], [18] for selecting
a bid or offer price. The described smart contracts are deployed
in Ethereum nodes in a private blockchain network. Figure 4
shows the average normalized reward of transactions in last 30
days for each buyer and seller. After 300 days of learning, all
sellers have similar rewards about 65%, and buyers’ rewards
are all around 40%.

Figure 4. Participants’ average normalized reward (%) of last 30 days

To more specifically illustrate the results above, we take
an example of the peak hour 17:00-18:00 across 300
days. The TOU and FIT of the hour is ¢15/kwh and
¢9/kwh, respectively, and participants choose a price from
{10, 11, 12, 13, 14}(¢/kwh) for each auction. All sellers indi-
vidually forecast their offering quantity for each auction of the
hour by sampling from the Beta distribution 30+20Beta(2, 2)
kwh with 5% forecasting error. Similarly, all buyers individu-
ally sample their bidding amount from the uniform distribution
Uniform(40, 60) kwh with 5% forecasting error. The total
clear quantity Q∗ and the total bidding and offering amounts
of 300 auctions are shown in Figure 5(a) and 5(b), respectively.
We can find that the total demand is beyond the total supply
in the TE market, and the auction clear level converges to



the supply level, which indicates that the energy supplied
by distributed generators to the market is fully utilized with
learning strategies for quotations.

Figure 5. The total quantity (kwh) results of the auctions for hour 17:00-
18:00: (a) Total clear energy quantities; (b) Total offering and bidding energy
quantities.

Further, we present the results of Buyer 51 and Seller 51
using EXP3(γ = 0.2) and UCB1(σ = 0.5), respectively, in
Figure 6. All the results ((b) - (d)) are shown as a moving
average of 30 auctions. In (b), we can find that due to the
supply shortage, in the later phase of learning, Buyer 51’s
cleared bidding energy converged around 80% on average
whereas Seller 51’s cleared offering quantity converged around
100%. Therefore, the expected normalized reward of Buyer 51
(i.e. 0.3) is lower than the Seller 51’s normalized reward (i.e.
0.8) as shown in (c). However, Buyer 51 still achieves 10%
expected improvement (i.e. cost decrease) over buying at TOU
while Seller 51 achieves beyond 40% expected improvement
(i.e. revenue increase) over selling at FIT as in (d). Hence, we
can see through the bandit learning process in auction games
that participants can learn about market conditions efficiently
and have their expected rewards converged.

Figure 6. The simulated results of Buyer 51 and Seller 51 in the auctions: (a)
Quoted quantities (kwh); (b) Clear percentages (%); (c) Normalized rewards
(%); (d) Improvements over trading with the DSO (%).

VI. CONCLUSION AND FUTURE WORK

A blockchain-based market design is proposed in this work
for supporting exchange of energy among market participants
in TE systems. Smart contracts that contain the double auc-
tion mechanism adopted by distributed nodes enable market
clearing to be independent of any third authority, which leads
to an efficient and trustworthy market for all participants. The
proposed intelligent pricing strategies by bandit learning can
provide participants with more benefits in auctions through
learning over transaction history.

Distribution grid constraints are not considered currently.
In the future, with more DERs injecting power into network,
physical constraints like congestion shall be considered in
deciding power delivery. In addition, smart contracts need to
be designed to cope with optimal power flow problems by
distributed nodes efficiently in a TE system.
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