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Cyber-physical systems (CPSs) are today ubiquitous in urban environments. Such systems now serve as the

backbone to numerous critical infrastructure applications, from smart grids to IoT installations. Scalable and

seamless operation of such CPSs requires sophisticated tools for monitoring the time series progression of

the system, dynamically tracking relationships, and issuing alerts about anomalies to operators. We present

an online monitoring system (illiad) that models the state of the CPS as a function of its relationships be-

tween constituent components, using a combination of model-based and data-driven strategies. In addition

to accurate inference for state estimation and anomaly tracking, illiad also exploits the underlying network

structure of the CPS (wired or wireless) for state estimation purposes. We demonstrate the application of

illiad to two diverse settings: a wireless sensor motes application and an IEEE 33-bus microgrid.
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1 INTRODUCTION

It has been projected that by the year 2030, cities will grow by 590,000 square miles and add

an additional 1.47 billion people, so six of every ten people will live in a city. One of the most
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Fig. 1. Urbanmicrogrid examples and design and deployment scenarios. (a)Represents an AC grid connected

to main grid through a point of common coupling (PCC). (b) Represents a Diesel generator along with other

Distributed Generation sources without the main grid.

consequential changes with this global influx of citizens will be the stress placed on cyber-physical

systems across the urban landscape, from smart grids to massively distributed IoT installations to

support net-zero energy objectives. At the same time, as cities become seen as urban-scale cyber-

physical systems, a vast amount of data about system management and operation is continuously

being harvested and analyzed through sensor networks. Scalable and seamless operation of such

cyber-infrastructure requires sophisticated tools for monitoring the progression of the system,

dynamically tracking relationships, and issuing anomaly alerts to operators.

Leveraging our prior work (Momtazpour et al. 2015), we develop a system dynamics approach

(illiad) to invariant and anomaly detection in cyber-physical systems. Our key contributions are:

—A state estimation and anomaly detection algorithm (KASE) that combines model-based

(Recursive Bayesian Filtering) and data-driven (Autoregression with Exogenous Inputs and

Exploratory Factor Analysis) approaches. The integration of model-based and data-driven

strategies leverages the selective superiorities of both into a comprehensive system.

—An approach to incorporate the underlying network structure of the cyber-physical system

(wired or wireless) into the state estimation process. We demonstrate how this idea sig-

nificantly improves the computational complexity of inference and renders the approach

tractable to large urban settings.

—A visual dashboard application for real-time anomaly detection and alerting in urban-scale

cyber-physical systems. We demonstrate the application of illiad to two diverse settings: a

wireless sensor motes application and an IEEE 33-bus microgrid.

2 BACKGROUND AND RELATEDWORK

Availing energy from renewable sources to meet increased energy demands due to increasing elec-

trification in urban environments is a key challenge we are faced with today as alluded to by Zheng

et al. (2014). An integration of microgrids into the existing power grid has been widely acknowl-

edged as a potential solution. Resilient operation of power andmicrogrid systems requires constant

monitoring of data to extract or predict anomalies and to support rapid system recovery. Figure

1 represents typical urban microgrids and deployment scenarios. The microgrid consists of sev-

eral distributed generation units (DGs), such as a photovoltaic (PV) array and diesel generator, as

well as energy storage systems and loads. These components are connected together using power

lines, transformers, and feeders. Microgrids can operate in both islanded and grid-tied modes. In

the islanded mode, the microgrid is as shown in Figure 1(b).
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Energy systems (e.g., PV, battery, load, diesel generator) are typically installed and connected

to the microgrid controller via TCP/IP with systems that feature Supervisory Control and Data

Acquisition (SCADA), exploiting open communication standards, such as OLE for Process Control

(OPC) and Modbus RTU/TCP, which is a master-slave protocol for use with its programmable

logic controllers (PLCs). Measurement data and its collected features vary depending on the type

of energy device and its communications protocol, such as the format of XML. The measurement

data contains active and reactive output power values of each device, voltage and frequency values

as microgrid data, and state of charge (SOC) for batteries for every second.

Microgrids, including those studied here, are typically based on traditional power distribution

system models, while also incorporating relatively modern urban components, such as electric ve-

hicles (EVs) and energy storage (ES) devices along with renewable power generation components,

such as wind turbines and PV cells (Chowdhury and Crossley 2009). However, such new additions

make the operation of the distribution system more complex (Tsikalakis and Hatziargyriou 2011).

One factor, for example, would be the uncertain and intermittent power output of the renewable

distributed generation components, specifically PV panels and wind turbines. Such intermittent

power output makes system state estimation a challenging task.

State estimation of the power system is typically accomplished by learning invariant relation-

ships between system components, and such invariants are then used in an energy management

system (EMS) to construct a real-time network model (Monticelli 2000). In Cobelo et al. (2007),

the authors proposed a method aimed at providing the distribution management system con-

troller with real-time information from the microgrid to increase the penetration of the renew-

able distributed generation. Rana and Li (2015) have proposed a Kalman filter-based microgrid

state estimation method using an IoT network to acquire information about the distributed gen-

eration grid. Wang et al. (2014) also proposed a linear filtering-based state estimation method

that mainly focused on small signal models. Hu et al. (2011) developed a probabilistic model to

conduct real-time linear state estimation through belief propagation. Instead of focusing on a sin-

gle microgrid, Korres et al. (2011) proposed a multi-microgrid state estimator with limited real-

time measurement and investigated the impact of distributed generation in both grid-connected

and islanded scenarios. However, most existing research has focused on accuracy of estimation

rather than anomaly detection using invariant relationships between components. Even fewer ap-

proaches exist that successfully combine model-based and data-driven approaches with the goal of

anomaly detection through state estimation. Anomaly detection in microgrids using sensor loca-

tion and connection information can be considered a spatio-temporal anomaly detection problem,

and some relevant work has been carried out by Chawla et al. (2012) in the transportation do-

main. In Zheng et al. (2015), the authors propose a spatio-temporal anomaly detection system for

detecting collective anomalies by leveraging multi-domain datastreams.

3 PROBLEM FORMULATION

As described earlier, our work builds upon the preliminary framework described in Momtazpour

et al. (2015), and we begin by introducing this approach in context.

We are given a set of n timeseries D = x1 (t ) . . . xn (t ) in a single or across multiple cyber-

physical systems, each timeseries xi (t ) is modeled as a vector. The values of the vector for a time

window tk . . . tk+w are represented as

Xk :k+w
i = [xi (tk ),xi (tk+1), . . . xi (tk+w )]

T . (1)

Each timeseries xi (t ) is represented by a random variable Xi and is assumed to be drawn from

a distribution represented by Xi . Every CPS has many direct and latent interactions amongst the
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components and having sufficient insight into these interactions and relationships is crucial to

effectively manage the system.

Definition 3.1 (Approximate Dependency). At time step tm , time series x j (t ) ∈ D approximately

depends on xi (t ) ∈ D if and only if there exists a function f : R→ R that for appropriately small

ϵ > 0:

x̂ j (tm ) = f
(
X1:m−1
j ,X1:m

i

)
(2)

and

|x j (tm ) − x̂ j (tm ) | < ϵ . (3)

This dependency is depicted by x j (t )
ϵ−→ xi (t ) |tm .

Definition 3.2 (System Invariants). Two timeseries, x j (t ) ∈ D and xi (t ) ∈ D, are system-

invariant up to time T within range of ϵ if and only if at least one of the following is satisfied:

∃f : R→ R and ∀ t | 0 ≤ t ≤ T : x j (t )
ϵ−→ xi (t ) |0≤t ≤T

or

∃f : R→ R and ∀ t | 0 ≤ t ≤ T : xi (t )
ϵ−→ x j (t ) |0≤t ≤T .

We denote an invariant time series by xi (t )
ϵ−⇀↽− x j (t ).

Based on the nature of the system, dependencies between time series can be linear or nonlinear

and this is modeled by the function f . In complex cyber-physical systems, when we have a large

number of time series, it is appropriate to represent the invariants in the form of a graph.

Definition 3.3 (Invariant Graph). GraphG = (V ,E) with the set of verticesV = {v1, . . . ,vn } and
the set of edges E = {e1, . . . , en } is called an invariant graph of a system with observed timeseries

D = {x1, . . . xn }, where e = (vi ,vj ) ∈ E if and only if xi (t )
ϵ−⇀↽− x j (t ).

From Definition 3.3, we can surmise that vertex vi is equivalent to a timeseries xi (t ). System
invariants and invariant graphs represent features and system-function under normal conditions.

In the presence of anomalies, when the function of the system deviates from the norm, these de-

pendencies might disappear. While two timeseries xi (t ) and x j (t ) might be invariant under normal

conditions, the invariant relationship might disappear in the case of an anomaly.

Definition 3.4 Broken Invariants. We say that system invariant xi (t )
ϵ−⇀↽− x j (t ) is broken at time

T = tm if and only if timeseries xi (t ) and x j (t ) satisfy the following conditions:

∃f : R→ R
and

∀ t | 0 ≤ t < T =tm :

��x j (t ) ϵ−→ xi (t ) |t<T ∧ |x j (tm ) − f (X1:m−1
j ,X1:m

i ) | ≥ ϵ��
or

��xi (t ) ϵ−→ x j (t ) |t<T ∧ |xi (tm ) − f (X1:m−1
i ,X1:m

j ) | ≥ ϵ��.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 35. Publication date: January 2018.



illiad: InteLLigent Invariant and Anomaly Detection in Cyber-Physical Systems 35:5

Fig. 2. Original

System Topology.

Fig. 3. ARX Invariant

Graph.

Fig. 4. Original

Method (ARX + ARXL)

Invariant Graph.

Fig. 5. KASE Method

Invariant Graph.

In a CPS, the existence of certain unobserved factors has an effect on overall system behavior.

But modeling these factors and their effects on all the electro-mechanical devices in a CPS is a

non-trivial task. Characterizing these latent effects can aid in state estimation.

Figure 2 shows the network topology of an example CPS with N componentsX1, . . . ,XN . Here,

the solid lines indicate direct relationships between sensors through physical connections while

the dashed lines indicate indirect relationships between sensors. We see five direct and two indi-

rect relationships depicted here. Figures 3 and 4 represent invariant graphs that can be inferred

using current state-of-the-art methods (ARX and ARX+ARXL; introduced in Momtazpour et al.

(2015)). ARX is a classical autoregression method (with exogenous inputs) and thus captures only

direct relationships, as shown in Figure 3. ARX+ARXL, as shown in Figure 4 does learn indirect

relationships but these relationships are linear and rather simplistic in nature. Our proposed ap-

proach (KASE) aims to identify more complex hidden relationships through hidden factors labeled

h1, . . .hk and Kalman state estimates in Figure 5. These support the modeling of the system at

higher orders.

3.1 State Estimation with Kalman Filters

Anomaly detection in sensor networks can be addressed using a dynamic state estimation tech-

nique (Nishiya et al. 1982), wherein at any time point t , we wish to estimate the state of each

component in the system. As a function of these state estimates and corresponding actual state

measurements, we can then infer whether the system is stable or if there is an anomaly in one or

more components in the system. One of the most robust and widely used methods for state esti-

mation is the Kalman filter (Kalman 1960), which is a special case of recursive Bayesian estimation

wherein the data is considered to obey the Gaussian distribution (Chen 2003). In this article, we

consider the effects of state estimation in CPS using the linear Kalman filter. We model the Kalman

filter as described byWelch and Bishop (2001). It attempts to estimate the state x ∈ Rn at time step

k of a discrete-time controlled process with a measurement z ∈ Rn , The Kalman filtering process

assumes that the matrices A,H ,Q , and R, which represent the process transition matrix, the mea-

surement transition matrix, the process covariance matrix, and measurement covariance matrix,

respectively, and the initial mean and covariance of the data are known at the outset. In our work,

we estimateA,Q , and R using expectation maximization (Borman 2004). The matrixH is the iden-

tity matrix. The initial state mean and covariance (μ0 and Σ0) are estimated from historical data.

3.2 Leveraging the Neighborhood Assumption

Section 3 outlines the basic problem framework and provides definitions about invariants, and

anomalies. Although the original (ARX + ARXL) method attempts to find all direct and indirect

dependencies in addition to learning complex latent variables, we hypothesize that considering the
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network topology of the CPS to learn only a set of direct relationships for each component yields

equal or stronger state estimation and anomaly detection capabilities. We term this approach SAIL

for Structure Aware Invariant Learning.

Let us first consider the case when the topology of the CPS is known, for example, consider

the sample CPS depicted in Figure 2. Here, the system consists of N components X1, . . . ,XN . If

we consider X1, then it has two direct connections, one to X3 and the other to X2 along with an

indirect relationship withXN . Our hypothesis in the context ofX1 claims that the state ofX1 (t ) can
be estimated simply using only the valuesX 1:t−1

1 ,X 1:t
3 ,X 1:t

2 and the Kalman filter a posteriori state

estimate k1 (t ). Hence, set {X2,X3} forms the SAIL neighborhood of X1 denoted S
1
n . In the context

of wireless sensor networks that lack a connected network topological structure, we exploit the

physical locations of sensors to obtain a proximal set of nearest neighbors for each component in

the wireless network of CPS components.

The SAIL approach requires us to augment our previously stated definition 3.1 as follows:

Definition 3.5 (Structure Aware Approximate Dependency). At time step tm , time series x j (t ) ∈ D
with SAIL neighborhood S jn approximately depends on xi (t ) ∈ D if and only if, xi (t ) ∈ S jn and

there exists a function f : R→ R that for appropriately small ϵ > 0:

x̂ j (tm ) = f
(
X1:m−1
j ,X1:m

i

)
(4)

and

|x j (tm ) − x̂ j (tm ) | < ϵ (5)

This dependency is depicted by x j (t )
ϵ−→ xi (t ) |tm

The aforementioned structure informed invariant learning methods help scale the invariant

learning procedure to large systems as they reduce the quadratic complexity of the algorithm.

This is because, although the complexity of the algorithm technically is still quadratic in the worst

case, the complexity of the newly proposed KASE (Kalman Autoregressive State Estimation with

Latent Factors and Exogenous Inputs) invariant learning algorithm is a function of the average

cardinality of the SAIL neighborhood for all the components. Since it is highly unlikely that all or

even most of the components of a CPS will be directly connected, the SAIL neighborhood of each

component will be relatively sparse hence achieving the scalability and speeding up the algorithm

relative to benchmarks that do not exploit the neighborhood assumption.

We now outline the proposed KASE approach and explain the algorithm in detail in Section 4.

In Figure 5, we observe different colored nodes and edges. If we consider one node, say X2 (t ),
then we see that the SAIL neighborhood of X2 (t ) denoted S2n contains {X1 (t ),X3 (t )}. The blue-

colored incoming edges from X1 (t ) and X3 (t ) to X2 (t ) denote the invariants calculated for state

estimation of X2 (t ). The self-loop labelled k2 (t ) indicates the Kalman filter state estimate for X2 (t )
at time t . The latent factorsh1, . . .hk are the same as stated previously. Hence, the KASE algorithm

performs state estimation as a function of the current Kalman filter state estimate, the current

measurements of proximal components as well as the system-wide relationships learned through

the latent factors. The system hence seamlessly combines both model-based (Kalman filters) as

well as data-driven approaches (latent factor based autoregression) for state estimation.

4 METHODS

In this section, we describe the KASE algorithm for invariant learning and anomaly detection. We

also outline the working of the entire illiad application.
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4.1 Factor Analysis

Let X1, . . .Xn denote random variables and H1, . . . ,Hk denote k hidden factors, and assume that

the latent variables are generated using factor analysis with the assumption that they can be ex-

pressed as linear combinations of the observed variables. Factor analysis attempts to model the

variation of the data and hence models the latent sources that cause said variation (De Winter and

Dodou 2016). Factor analysis although similar to PCA is more generalizable due to consistency of

factor loadings for different feature subsets (Suhr 2005). Details of the exact factor analysis pro-

cedure we have used can be obtained from Momtazpour et al. (2015). Other resources for factor

analysis are also available (Jöreskog 1967; Harman 1976).

4.2 KASE—Kalman Autoregressive State Estimation with Latent

Factors and Exogenous Inputs

If we were to once again consider the set D = {x1 (t ),x2 (t ), . . . xn (t )}, then according to the ARX

model in Jiang et al. (2006), the state estimate for a timeseries at time t is given by

x̂ j (t ) =
u∑

p=1

apx j (t − p) +
v∑

p=0

bpxi (t − l − p). (6)

Here, x̂ j (t ) represents the state estimate of the timeseries x j at time t and this is calculated as a

function of the previous values of timeseries x j and the values of the exogenous timeseries xi . The
parameters u,v, l represent the order of the model and control the number of previous timesteps

that affect the state estimate at the current timestep. ap and bp represent weight parameters that

control the effect of each of the historical values on the current timestep. In our model, u = v and

the values are estimated using cross-validation. In our case, we assume that l = 0 as there is no

lag.

Incorporating the previous assumptions, the corresponding equation for the Latent Factor ARX

model (ARX + ARXL) as outlined in Momtazpour et al. (2015) is

x̂ j (t ) =
u∑

p=1

apx j (t − p) +
u∑

p=0

bpxi (t − p) +
u∑

p=0

k∑

q=1

cpqhk (t − p). (7)

Here, k indicates the number of latent factors and u indicates the size of the sliding window we

use (the number of previous values we consider). For our experiments, we have set u = 10.

We modify Equation (7) to incorporate the Kalman filter state estimates step as follows:

x̂ j (t ) =
u∑

p=1

apx j (t − p) +
u∑

p=0

bpxi (t − p) +
u∑

p=0

k∑

q=1

cpqhk (t − p) +
u∑

p=0

dpkji (t − p). (8)

Equation (8) incorporates the Kalman state estimates for timeseries x j , represented by the sym-

bol kji (t ). The dp ’s represent the corresponding weights of each historical state estimate. The sym-

bol kji (t ) indicates the Kalman filter state estimate for x j (t ) calculated using the measurements of

timeseries x j and xi at time t .

4.2.1 Learning Invariant Based State Estimates. In the context of two timeseries, xi and x j ,
wherein x j is the output timeseries and xi is the input timeseries, we calculate the state estimate

of x j (t ) as follows:
Let x̄k ∈ R2X 1 indicate the Kalman prior state mean of the state at time k , then the transition

equations of the Kalman filter is given by

x̄k = Axk−1 + Buk +wk−1. (9)
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Here, A ∈ R2X 2 is the transition matrix. xk−1 ∈ R2X 1 indicates the a posteriori state estimate at

time k − 1. We ignore the optional control input term Buk and make the assumption as stated

previously that wk−1 ∈ R2X 1 is a white-noise process that indicates the error at time k − 1:
yk = zk − Hx̄k , (10)

whereH ∈ R2X 2 is the measurement matrix. This, in our case, is the identity matrix. zk ∈ R2X 1 are

the actual measurements at time k . In the case of the two timeseries xi (input) and x j (output),

zk =

[
x j (k )
xi (k )

]
.

yk ∈ R2X 1 indicates the residual at time k :

xk = x̄k + Kyk . (11)

K ∈ R2X 2 represents the Kalman gain and is calculated as a function of the process and measure-

ment covariance matrices P and Q, and the measurement matrix H1

xk ∈ R2X 1 represents the posterior state estimate. In the context of the time series xi and x j , where
x j is the output timeseries whose state at time t is to be estimated,

xt =

[
kji (t )
ki j (t )

]
.

Here, kji (t ) ∈ R indicates the a posteriori state estimate (mean) for timeseries x j using the exoge-

nous input xi for time t . If we now refer back to Figure 5, and consider the nodeX2 (t ) in blue, then

the self-loop labelled k2 (t ) ∈ RCX 1 represents a vector of a posteriori state means, where C = |S2n |
and where the SAIL set S2n of timeseries X2 = {X1,X3}:

k2 (t ) =

[
k21 (t )
k23 (t )

]
.

A, P, Q are estimated (and periodically re-estimated) from historical data using the expectation

maximization algorithm (Borman 2004). The initial state mean and covariance μ0 and Σ0 are esti-

mated from the data.

As acknowledged by Jiang et al. (2006), Ge et al. (2013), Chen et al. (2010), Chen et al. (2008),

and Sharma et al. (2013), ARX only takes into account direct linear relationships. Hence, we retain

the latent factor model to take into account the complex underlying relationships between the

components in the system. We also consider the model-based Kalman filtering approach owing to

the advantages and improvement of system performance in fault detection and health monitoring

of hybrid-approaches (model-based + data-driven) discussed in Tidriri et al. (2016).

Algorithm 1 represents the newly designed KASE algorithm that combines both model-based

and data-driven approaches in learning the invariant graph. The algorithm defined inMomtazpour

et al. (2015) has been augmented to incorporate topological structural assumptions (line 6). At each

timestep t , theUpdateKalman function (line 16) takes in the measurements of a pair of timeseries

xi (t ), x j (t ) and updates the model using Equations (9), (10), and (11). The posterior state estimate

of the updated model is then used to learn θKASEji . The F ∗ji ’s are calculated and superiority threshold
(Δ), minimum acceptable score (τ ) are enforced similar to Momtazpour et al. (2015). We also adopt

the same alerting and anomaly ranking and localization procedure with the RMSE evaluation

metric. In Section 5, we provide a comparison of the anomaly detection ranking scores of both the

original algorithm (ARX + ARXL) proposed in Momtazpour et al. (2015) and our newly proposed

KASE algorithm.

1The notation for Equations (9), (10), and (11) has been taken from Labbe Jr (2014) and Welch and Bishop (2001).
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ALGORITHM 1: KASE Invariant Search Algorithm

Input: xi , i ∈ {1, . . . ,n}: set of timeseries, Δ: ARX superiority threshold, τ : minimum acceptable score,

ts and te : start and end time of training dataset.

Output: G: Invariant Graph

1 SARX = {};

2 SARXL = {};

3 SKASE = {};

4 for i = 1 to n do

5 for j = 1 to n do

6 if ((i == j) or (xi � S
j
n )) then

7 continue;

8 end

9 foreach ts ≤ t ≤ te do

10 Learn an ARX model, θARXji , using Equation (6);

11 Calculate x̂ARXj (t ) using θARXji ;

12 Compute F ARX
ji (t ) ;

13 Learn an ARXL model, θARXL
ji , using Equation (7);

14 Calculate x̂ARXL
j (t ) using θARXL

ji ;

15 Compute F ARXL
ji (t ) ;

16 UpdateKalman(xi (t ),x j (t ) ) /*Add Measurements*/

17 Learn a KASE model, θKASEji , using Equation (8);

18 Calculate x̂KASEj (t ) using θKASEji ;

19 Compute F KASE
ji (t ) ;

20 end

21 if
( ∑te

t=ts
F ARX
ji (t ) ≥ max (

∑te
t=ts
F ARXL
ji and

∑te
t=ts
F KASE
ji ) − Δ

)
and

(mint (F
ARX
ji (t )) ≥ τ ) then

22 SARX = SARX ∪ {xi � x j };
23 else if

( ∑te
t=ts
F ARXL
ji ≥ (

∑te
t=ts
F KASE
ji − Δ)

)
and (mint (F

ARXL
ji (t )) ≥ τ ) then

24 SARXL = SARXL ∪ {xi � x j };
25 else

26 /*Indicates that F KASE
ji has highest score*/

27 SKASE = SKASE ∪ {xi � x j };
28 end

29 end

4.3 illiad System Architecture

We outline the functioning of the illiad anomaly detection system in this section. Figure 6 depicts

the process flow/architecture diagram of the illiad system. The system periodically re-trains the

Kalman filter and the factor analysis model using historical data while also continuously updating

the state estimate of the Kalman filter using new data instances. The system also has a front-end

dashboard with the invariant graph depicted on screen aiding the system maintainer to easily

glean whether the system has anomalous components. Figures 7 and 8 represent the dashboard

of the wireless sensor motes temperature sensor network and the IEEE 33 bus microgrid network

described later in Section 5.1. The dashboard is interactive and allows for the user to click on nodes

in the network to view various historical data and metrics about them. In case of an anomaly,

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 35. Publication date: January 2018.



35:10 N. Muralidhar et al.

Fig. 6. illiad System Architecture.

Fig. 7. illiad Dashboard - Sensormotes. Fig. 8. illiad Dashboard - IEEE 33 Bus

Microgrid.
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Fig. 9. Lab Layout Sensor Motes. Fig. 10. Clustering of Sensors Based onOriginal

Temperature Readings. A fair degree of spatial

correlation can be observed.

an alert is issued (indicated by a red box under the invariant graph) on the dashboard and the

corresponding broken invariants are highlighted in red as shown in the figures. It is apparent from

the broken invariants in Figure 7 that Sensor 4 has an anomaly. The timeseries graphs at the bottom

of the dashboard represent the residuals of each of the invariants of the anomalous sensor (sensor

4 in Figure 7 and Bus 30 in Figure 8). In addition to residuals, the actual temperature readings and

the voltage magnitudes, phase angles, and PV,Wind Generation statistics are also included in their

respective dashboards. The illiad system can thus be used for system health monitoring and fault

detection both for wired and wireless cyber-physical systems.

5 EXPERIMENTAL RESULTS

We present the application of our methodology to two diverse datasets in urban computing.

Through these experiments, we seek to showcase that our system is applicable to both wireless

and wired sensor networks in real-world settings. We will showcase how structural and proximal

relationships are inferred automatically in the case of wireless sensor networks. Most importantly,

we wish to demonstrate how our system leads to an improvement in the quality of anomaly and in-

variant detection over existing benchmarks. To this end, we conduct experiments to showcase the

strength of invariant graphs learned by illiad as well as its ability to accurately identify anomalies

even with a relatively sparse invariant graph. We also discuss the benefits of the SAIL invariant

learning approach over the combinatorial invariant learning approach used in prior work by ana-

lyzing the runtime behavior of the two systems.

We first describe the application of illiad to a wireless sensor network and subsequently to a

microgrid system.

5.1 Sensor Motes

Dataset Description: The sensor motes dataset contains measurements from wireless sensors at

Intel Berkeley Research lab.2 There are a total of 54 sensors located at a lab measuring temperature,

humidity, light, and voltage between February 28 and April 5, 2004. Each sensor was able to record

different variables every 31s. Figure 9 shows the location of each sensor in different parts of the

lab. We focus on temperature recordings between February 28 and March 10 for our study.

2http://db.csail.mit.edu/labdata/labdata.html.
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Fig. 11. Temperature Trends of Sensors in the top right yellow cluster in Figure 10.

Fig. 12. Average Relationship Strength Per Temperature Sensor.

Fig. 13. Average Residual Per Temperature Sensor.

Data Processing: We cleanse the data by eliminating sensors with a large number of missing

entries. The missing temperature readings in the remaining set of sensors were addressed using

linear interpolation (Meijering 2002). The dataset was then down-sampled to 10min intervals with

the mean as the sampling rule. Figure 10 depicts a representation of all the filtered set of sensors

used in our analysis, clustered according to their temperature readings. Figure 11 shows the tem-

perature values of a group of sensors that are part of the same cluster. We can see that all the

sensors in the figure showcase similar patterns of temperature variation.

Results and Discussion: In Figure 12, we plot the average normalized relationship strength

(1 − avд_prediction_error ) per temperature sensor. The relationship strength is indicative of how

well the invariants that a sensor is involved in are able to estimate the current state of the sen-

sor. We observe that the relationship strengths of sensors obtained using KASE is higher than

that obtained using the original (ARX + ARXL) method indicating that KASE is able to infer a

higher number of invariant relationships that are stronger. This theory is further corroborated by

Figure 13, which depicts the average residuals per temperature sensor; in this case as well, we
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Fig. 14. Original Nearest-Neighbor Graph

(based on sensor location information).

Fig. 15. InvariantGraph Learned fromKASE al-

gorithm.

Fig. 16. Invariant Graph Learned from

ARXL + ARX method (with SSAIL assumption).

Fig. 17. Temperature Sensor Number 4, Orig-

inal Readings vs. Anomaly Injection Readings

Snapshot.

observe that KASE is able to generalize better on the test set and produce more accurate temper-

ature state estimates. The network structure of the wireless sensor network is derived using the

SAIL method (using sensor locations) described in Section 3 and is shown in Figure 14. The in-

variant graph learned using this network from the KASE algorithm is depicted in Figure 15. We

observe that the invariant graph is identical to the original network structure shown in Figure 14.

Figure 16 indicates a similar invariant graph obtained by executing the original (ARX + ARXL)

algorithm with the SAIL neighborhood constraint on the same temperature sensormotes dataset.

We observe that the number of edges learned in the invariant graph is lower than in the case of

KASE. The missing edges are depicted in red in Figure 16.

Anomaly Detection: Apart from the invariant discovery and state estimation accuracy, we also

conducted experiments to test the anomaly detection capabilities of the KASE algorithm in com-

parison to the original (ARX + ARXL) algorithm. The experiment was carried out by first injecting

anomalies into temperature sensor number 4 between 11 a.m. and 23:59 p.m. onMarch 9, 2004, and

then running the two algorithms (original ARX + ARXL and the KASE algorithm) to understand

the behavior of the two systems when faced with an anomaly. The anomalous snippet of the time

series of sensor 4 and the original timeseries have been shown in Figure 17. The anomalies were

generated by adding Gaussian noise with 0 mean and 2.0 standard deviation to the sensor 4 tem-

perature values at certain pre-determined timepoints between 11 a.m. and 23:59 p.m. on March 9,

2004. These anomalies have been indicated in red in Figure 17. We use the anomaly ranking al-

gorithm used in Momtazpour et al. (2015) to quantify and compare the anomaly detection quality
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Table 1. Anomaly Detection Score Sensormotes

Component Method Name Remaining Links Broken Links Ranking Score

Sensor 4 Original (ARX + ARXL) 14 15 0.517

Sensor 4 KASE 0 2 1.0

of both methods. The results of the anomaly detection are indicated in Table 1. Here, we observe

that although a significant number of invariants concerning the anomalous sensor (sensor 4) are

broken, there are almost an equivalent number of invariants still existing in the system indicating

that these invariants do not register the anomaly. The KASE algorithm, however, recognizes the

anomaly by breaking all the existing invariants (in this case sensor 4 initially has two invariants,

which are both broken) and hence obtaining a higher anomaly score and also providing for a more

interpretable detection mechanism.

Discussion: State estimation in the current illiad system could suffer if the sensor distribution

is significantly skewed spatially. Since we consider the spatially closest neighbors to a particular

sensor as candidates for invariant learning, a significant skew in that distribution could make esti-

mation challenging due to sparse data in some locations. This in turn could lead to fewer invariants

inferred and thus diminished capacity for anomaly detection. The use of Gaussian processes for

dynamic sensor placement (Ramakrishnan et al. 2005; Krause et al. 2008) can aid in judicious place-

ment of sensors. A second issue in generalization has to do with potential mobility of sensors in

practical settings (in which case, some violations of invariants could be normal). In IoT settings,

we need to inherently model sensor mobility into the analytics engine.

5.2 Electric Power Microgrid

Dataset Description: This simulated dataset is based on the (real) IEEE 33-bus standard distribu-

tion power system, a commonly used example distribution network. It is composed of 33 electric

buses or nodes. Bus 1 is a transformer connecting the distribution level system and bulk trans-

mission power system. It is the feeder to the whole system, through which all the electric power

flows into the network. It serves as the regular energy source. The other 32 buses are all load buses

initially, which means that they only consume energy. We model all energy consumers and not

the energy source in Bus 1 during our experiments as the voltage and power of the transformer is

assumed constant throughout the dataset generation process. To imitate a typical mircrogrid, we

have integrated multiple non-traditional elements into the system, including two types of renew-

able distributed energy sources: PV and wind turbines, electric vehicles, and an energy storage

device.

Data Processing: The hourly operating conditions of this distribution system are simulated

for a year with a 1h sampling rate, which is 8,760 cases in total, using the MatPower package

(Zimmerman and Gan 1997). We conducted 8,760 power flow calculations based on hourly scales

of the regular and irregular load and the hourly outputs of the renewable distributed generation.

The load consumption, solar radiation and wind intensity values required as input for data gener-

ation were all considered for the city of Richmond, Virginia USA, to ensure consistency between

the electric load, and the energy produced using distributed generation. The 8,760h load data has

been taken from a dataset containing commercial and residential hourly load profiles for all TMY3

locations in the United States.3 For different load buses, we use 5% uniformly distributed deviation

to generate different load curves that follow the same general pattern. The load at Bus 33 has a

3https://en.openei.org/datasets/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-

united-states.
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Fig. 18. Original Network IEEE 33 Bus with Invariants and Anomalies.

solar panel attached to it. The solar radiation data used to generate the synthetic PV output is

available from the National Solar Radiation Data Base.4 One wind turbine is attached to Bus 15,

and the power output of a wind farm located close to Richmond the data for which was obtained

from the National Renewable Energy Laboratory Wind Prospector Data Set5 was used as a ref-

erence for the simulation. We have also attached an EV charging station to Bus 10. A one-year

charging load for this station was obtained from Idaho National Laboratory EV Project Quar-

terly and Annual Report Data.6 An energy storage battery is attached to Bus 2. For simplicity, we

adopt a charging/discharging strategy that assumes that the battery is charged during the load

valley from 00:00 a.m. to 8:00 a.m. and that it is discharged from 9:00 a.m. to 11:00 p.m. The phys-

ical connections among the various components of the microgrid system have been specified in

Figure 18(a) . It must be noted that the energy storage device depicted at Bus 2 has not been mod-

eled as an explicit separate component; instead the load at Bus 2 has been modified appropriately

to depict behavior of having an energy storage device attached to it. Hence, we do not model the

battery as a separate component in our experiments.

Results and Discussion: Figure 18(a) represents the circuit diagram of the IEEE 33 Bus network

used in our experiments.We use the network structure depicted in the figure (excluding the dashed

lines that depict open switches) to learn the SAIL neighborhoods of each of the 35 components.

The Wind turbine, PV Cell, and the Electric Vehicle Load have been renamed Bus 35, Bus 36, and

Bus 37, respectively. The SAIL neighborhood learned by the KASE algorithm has been depicted

in Figure 18(b) and the broken links due to anomalies have been depicted in Figure 18(c). We see

that the invariants learned by the KASE algorithm correspond to the original circuit diagram. The

KASE has three sub-components—ARX, ARXL, Kalman State Estimation. These three algorithms

each try to learn relationships between each pair of invariants. From Algorithm 1 (lines 21 to 29), it

is clear that the invariant learning process attempts to select the strongest relationship between a

pair of components learned by ARX, ARXL and Kalman state estimation. Hence, we can conclude

that the algorithm that contributes the most number of invariants to the graph has the property

of learning stronger relationships between components. Table 2 depicts the number of invariants

learned as a function of Maximum Acceptable Error (MAE). The MAE is the maximum predic-

tion error (per invariant) below which invariant-relationships learned by any of the aforemen-

tioned procedures qualify for selection (this can also be considered to be 1 − τ , where τ indicates

the minimum acceptable invariant-relationship strength) during the invariant learning process.

4http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/by_state_and_city.html.
5https://mapsbeta.nrel.gov/wind-prospector/?visible=wind_3tier_site_metadata.
6https://avt.inl.gov/project-type/downloads.
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Table 2. Number of Invariants Learned as a Function of MAE

Max. Acceptable Error (MAE) Original_SAIL KASE KASE_ARX KASE_ARXL KASE_KSE

0.0001 0 0 0 0 0

0.001 11 12 0 3 9

0.002 20 21 0 6 15

0.003 22 27 0 6 21

0.004 34 38 0 8 30

0.005 46 48 0 15 33

0.006 66 67 0 17 50

0.0851 68 68 0 18 50

Table 3. IEEE 33 Bus Avg. Residual, Avg. Errors, and

Percentage Improvement of KASE over Original

Name Original KASE % Improvement

RMSE 0.004153 0.003964 4.5639

RSE 0.148742 0.134409 9.6363

RAE 0.365744 0.347662 4.944

Residual 0.002909 0.0027889 4.14

The original_SAIL column represents the (ARX + ARXL) original algorithm run using the SAIL

neighborhood assumption. The KASE column represents Algorithm 1 and KASE_ARX, KASE_

ARXL, and KASE_KSE represent the number of invariants learned by each of ARX, ARXL, and

Kalman state estimation sub-components of KASE, respectively. We observe that for any particu-

lar value of Maximum Acceptable Error, KASE learns a greater subset of the true set of invariants

(the IEEE 33 Bus network has a total of 68 invariants) than the Original_SAIL algorithm. Even

amongst the KASE sub-components, we can see that a majority of edges are contributed by the

KSE procedure indicating that the Kalman filtering procedure plays a major role leading to the

KASE algorithm learning a more diverse set of edges and stronger invariant relationships as com-

pared to the Original (ARX + ARXL) algorithm. We provide quantitative proof of our claim that

the KASE algorithm is indeed a better state-estimator by recording the average values for resid-

ual, RMSE (root mean squared error), RSE (relative squared error), RAE (relative absolute error)

on the test set in Table 3 and Figures 19, 20, and 21. We find that the KASE algorithm achieves a

significant percentage improvement over the Original (ARX + ARXL) algorithm in all cases. We

must note that we have left out the componenents (Bus20, Bus30, Bus7) in which anomalies were

injected in the test set as they will skew the results with high error values.7 Since this table specifi-

cally has been included to showcase the state-estimation capability of the KASE algorithm, we feel

excluding the anomalous nodes will have no effect as we have already demonstrated the anomaly

detection capabilities in Table 4.

Anomaly Detection: We introduce anomalies in the data to simulate a load surge at certain

time steps by decreasing the voltage at three different buses. We decrease the voltage magnitude

at Bus 7 between time steps 7,500 and 7,565. We also decrease the voltage at Bus 20 from time step

8,500 to 8,550 and at Bus 30 from time step 8,500 to 8,545 and showcase the effect of these anomalies

on the anomaly detection mechanism. These anomalies test the ability of the system not only to

detect and report the anomalies, but also the localization capability of the system in the presence

7If there is an anomaly, the system under/overestimates the state significantly, which is what is indicative of the anomaly.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 35. Publication date: January 2018.



illiad: InteLLigent Invariant and Anomaly Detection in Cyber-Physical Systems 35:17

Fig. 19. KASE vs. Original

(ARX+ARXL) Average RMSE.

IEEE 33 Bus Microgrid System.

Fig. 20. KASE vs. Original

(ARX+ARXL) Average RSE. IEEE

33 Bus Microgrid System.

Fig. 21. KASE vs. Original

(ARX+ARXL) Average RAE. IEEE

33 Bus Microgrid System.

Fig. 22. Anomaly Snapshot Bus 20. Fig. 23. Anomaly Snapshot Bus 30.

Fig. 24. Anomaly Snapshot Bus 7. Fig. 25. Running Time of Original (ARX + ARXL)

vs. Original (ARX+ARXL) + SAIL.

Table 4. Ranking and Anomaly Localization

Component Method Remaining Links Broken Links Score

Bus7 Original(ARX+ARXL) 6 14 0.7

KASE 0 2 1.0

Bus20 Original(ARX+ARXL) 11 21 0.66

KASE 0 2 1.0

Bus30 Original(ARX+ARXL) 4 13 0.76

KASE 0 2 1.0

of a single as well as multiple anomalous components. The voltages of the three buses around

the time steps of their respective anomalies have been depicted in Figures 22, 23, and 24. In each

figure the anomalous region has been bound by vertical red lines. Since the invariant relationships

learned are stronger, the anomaly detection procedure is also able to perform in a more robust

manner when it encounters an anomaly. This can be seen in Figure 18(c) where all the invariants

of Buses 7, 20, and 30 are broken in response to the injected anomalies. We also show that the

KASE algorithm is better at ranking anomalies; on average a higher score is learned using the

ranking procedure from Momtazpour et al. (2015). Table 4 shows that for each of the three buses,

all invariants involving the anomalous bus are broken for the KASE algorithm yielding a higher

anomaly score relative to the Original (ARX + ARXL) algorithm, further enforcing our belief that

the KASE algorithm proposed in this article learns stronger and more robust invariants most or all

of which are violated in case an anomaly occurs in the system. Finally, we depict the advantage of
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the SAIL methods toward increasing the scalability of the invariant learning algorithms discussed

in this article, thereby enabling the algorithms to be run with larger datasets. To conduct this

experiment, we generated a random matrix X ∈ RmXn , where we varied n between 10 and 100.

Here, n represents the number of unique timeseries (or unique components in the CPS). We then

ran both the Original and the Original method with the SAIL assumption. We simulated the SAIL

neighborhood by assuming that the underlying network of the CPS had a 0.3 graph density (each

component is connected to 30% of the other components in the network), which is much denser

than either of our examples depicted in this article and is much denser than most connected CPSs.

Figure 25 shows the significant advantage in terms of running time of incorporating the network

information in the invariant learning. The figure clearly shows that the Original (ARX + ARXL)

algorithm with the SAIL assumption scales much better than its non SAIL counterpart.

Discussion: Although we have taken great care to model our microgrid design using actual

load profiles, and real solar and wind intensity data to simulate the generation of the PV and wind

turbines, the lack of open datasets for microgrids is a serious bottleneck in this area of research.

Similarly, our injection of anomalies can be generalized into a greater taxonomy of faults, for

example, component failure, cyber-attacks, and changing environmental situations. We aim to

build upon the work here to develop a broader framework for microgrid analytics.

5.3 System Function—Wireless versus Wired Networks

It is instructive to compare and contrast our wired and wireless network studies. While we have

shown that our method works in both settings, wireless networks exhibit broader profiles of fault-

tolerance not witnessed in wired networks (e.g., a sensor malfunction in a wireless network might

not affect the overall system dynamics as much as a component failure in a microgrid might, for

example, potentially leading to cascading failures). The illiad system has a built-in rule to raise

an alert when a a threshold number of samples from some component of the CPS have failed to

register but more elaborate fault models can be explored within our framework.

5.4 System Characteristics and Minimum Requirements

The proposed system has been shown to work with both wireless and wired sensor networks

and has been tuned to work with power systems like microgrids as well as sensors that measure

physical indicators such as temperature. Further, the system is able to perform with either static or

streaming data, in bothwired andwireless settings. The system requires either an absolute physical

network diagram of the sensor network or a logical connectivity diagram so the invariant learning

can leverage this prior information as domain knowledge and further contribute to interpretability.

6 CONCLUSIONS AND FUTURE WORK

We have presented a system for anomaly detection and state estimation for wireless and wired

sensor networks. We have tested our models on multiple datasets (both real-world and synthetic)

and demonstrated the improvement in performance in comparison to the baseline method. Our

application successfully combines model-based (Kalman filter) and data-driven (auto-regression

and latent factor-based methods) approaches to learn a better state representation of the system

under surveillance. This higher accuracy in state estimation is achieved through learning stronger

relationships between various components in the networks while also being sensitive to potential

violations in these relationships resulting in anomalies. The sparse network structure of invariant

relationships learnt through the network-structure aware invariant learning procedures makes for

a scalable system, wherein the state of the system is easily interpretable by human experts tasked

with overseeing system maintenance. The real-time dashboard and the alerting system aid further

in this regard. The field of invariant discovery is vast as there are many varieties of latent, direct,
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indirect, simple, and complex relationships amongst components in cyber-physical systems. Power

systems are rife with non-linearities, like voltage phase-angles. Incorporating these components

into the invariant learning is a logical next step to improve the state estimation capabilities of

the system. Further, each component in a power system interacts with other components in com-

pliance with certain well-known laws of physics and electricity; thus, augmenting the anomaly

detection procedure to be cognizant of these relationships would be a useful direction of future

work.
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